Encyclopedia of Evolutionary Psychological Science

Living Edition
| Editors: Todd K. Shackelford, Viviana A. Weekes-Shackelford

Directional Smell

  • Angela Lambrou-LoucaEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-16999-6_1018-1



The ability of humans to discriminate between odorous stimuli perceived either from the right or from the left side.


Our sensory systems have developed in order to allow us to identify stimuli in the environment, evaluate them, and make sensible decisions about them (Kringelbach and Stein 2010). Olfaction is of great importance for food selection and reproduction (Porter et al. 2007). Olfactory sensory neurons can detect a large variety of odors and process the information by sending them through their axons to the olfactory bulb. The human perception of an odor is usually associated with pleasant or unpleasant emotions (Mori et al. 1999). The question that has been researched widely in the past decades is whether humans are able to define the direction of an odor, in other words, the ability to discriminate between odorous stimuli perceived either from the right or left side.

Kobal et al. (1989)...
This is a preview of subscription content, log in to check access.


  1. Brand, G., & Jacquot, L. (2001). Quality of odor and olfactory lateralization processes in humans. Neuroscience Letters, 316(2), 91–94.CrossRefPubMedGoogle Scholar
  2. Brand, G., Millot, J. L., & Henquell, D. (2001). Complexity of olfactory lateralization processes revealed by functional imaging: A review. Neuroscience & Biobehavioral Reviews, 25(2), 159–166.CrossRefGoogle Scholar
  3. Calvert, G. A., Hansen, P. C., Iversen, S. D., & Brammer, M. J. (2001). Detection of audio-visual integration sites in humans by application of electrophysiological criteria to the BOLD effect. NeuroImage, 14(2), 427–438.CrossRefPubMedGoogle Scholar
  4. Doty, R. L., Brugger, W. E., Jurs, P. C., Orndorff, M. A., Snyder, P. J., & Lowry, L. D. (1978). Intranasal trigeminal stimulation from odorous volatiles: Psychometric responses from anosmic and normal humans. Physiology & Behavior, 20(2), 175–185.CrossRefGoogle Scholar
  5. Frasnelli, J., & Hummel, T. (2005). Olfactory dysfunction and daily life. European Archives of Oto-Rhino-Laryngology and Head & Neck, 262(3), 231–235.CrossRefGoogle Scholar
  6. Frasnelli, J., Charbonneau, G., Collignon, O., & Lepore, F. (2008). Odor localization and sniffing. Chemical Senses, 34(2), 139–144.CrossRefPubMedGoogle Scholar
  7. Frasnelli, J., Ariza, V. L. B., Collignon, O., & Lepore, F. (2010). Localisation of unilateral nasal stimuli across sensory systems. Neuroscience Letters, 478(2), 102–106.CrossRefPubMedGoogle Scholar
  8. Hummel, T., Futschik, T., Frasnelli, J., & Hüttenbrink, K. B. (2003). Effects of olfactory function, age, and gender on trigeminally mediated sensations: A study based on the lateralization of chemosensory stimuli. Toxicology Letters, 140, 273–280.CrossRefPubMedGoogle Scholar
  9. Kleemann, A. M., Albrecht, J., Schöpf, V., Haegler, K., Kopietz, R., Hempel, J. M., Linn, J., Flanagin, V. L., Fesl, G., & Wiesmann, M. (2009). Trigeminal perception is necessary to localize odors. Physiology & Behavior, 97(3), 401–402.CrossRefGoogle Scholar
  10. Kobal, G., Van Toller, S., & Hummel, T. (1989). Is there directional smelling? Cellular and Molecular Life Sciences, 45(2), 130–132.CrossRefGoogle Scholar
  11. Kringelbach, M. L., & Stein, A. (2010). Cortical mechanisms of human eating. In Frontiers in eating and weight regulation (Vol. 63, pp. 164–175). Basel: Karger Publishers.CrossRefGoogle Scholar
  12. Moessnang, C., Finkelmeyer, A., Vossen, A., Schneider, F., & Habel, U. (2011). Assessing implicit odor localization in humans using a cross-modal spatial cueing paradigm. PLoS One, 6(12), e29614.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Mori, K., Nagao, H., & Yoshihara, Y. (1999). The olfactory bulb: Coding and processing of odor molecule information. Science, 286(5440), 711–715.CrossRefPubMedGoogle Scholar
  14. Porter, J., Anand, T., Johnson, B., Khan, R. M., & Sobel, N. (2005). Brain mechanisms for extracting spatial information from smell. Neuron, 47(4), 581–592.CrossRefPubMedGoogle Scholar
  15. Porter, J., Craven, B., Khan, R. M., Chang, S. J., Kang, I., Judkewitz, B., … Sobel, N. (2007). Mechanisms of scent-tracking in humans. Nature Neuroscience, 10(1), 27–29.Google Scholar
  16. Prah, J. D., & Benignus, V. A. (1984). Trigeminal sensitivity to contact chemical stimulation: a new method and some results. Attention, Perception, & Psychophysics, 35(1), 65–68.CrossRefGoogle Scholar
  17. Schneider, R. A., & Schmidt, C. E. (1967). Dependency of olfactory localization on non-olfactory cues. Physiology & Behavior, 2(3), 305–309.CrossRefGoogle Scholar
  18. Villarreal, B. L., Hassard, C., & Gordillo, J. L. (2012). Integration of directional smell sense on an UGV. In Mexican international conference on artificial intelligence (pp. 273–284). Berlin/Heidelberg: Springer.Google Scholar
  19. Von Békésy, G. (1964). Olfactory analogue to directional hearing. Journal of Applied Physiology, 19(3), 369–373.CrossRefGoogle Scholar
  20. Von Skramlik, E. R. (1925). Über die Lokalisation der Empfindungen bei den niederen Sinnen. Leipzig: JA Barth.Google Scholar
  21. Van Toller, C., Kirk-Smith, M., Sleight, D., Wood, N., & Lombard, J. (1980). Hemispheric processing of odours. Biological Psychology, 11(3), 262.CrossRefGoogle Scholar
  22. Wysocki, C. J., Cowart, B. J., & Radil, T. (2003). Nasal trigeminal chemosensitivity across the adult life span. Perception & Psychophysics, 65(1), 115–122.CrossRefGoogle Scholar
  23. Zatorre, R. J., & Jones-Gotman, M. (1990). Right-nostril advantage for discrimination of odors. Attention, Perception, & Psychophysics, 47(6), 526–531.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.University of NicosiaNicosiaCyprus

Section editors and affiliations

  • Menelaos Apostolou
    • 1
  1. 1.University of NicosiaNicosiaCyprus