Functional Effects of Foot Orthoses

Reference work entry

Abstract

This chapter considers how foot orthoses affect the various aspects of foot biomechanics, from the loads applied to the sole of the foot and how this load is transmitted through plantar soft tissues, through to the effects on joint moments and movement. The importance of understanding how footwear influences the effect of foot orthoses and whether we know which aspects of foot biomechanics change in relation to particular clinical cases is also covered.

Keywords

Orthotic insoles Footwear interaction Plantar pressure Foot kinematics 

References

  1. Almonroeder TG, Benson LC, O’Connor KM (2015) The effect of a prefabricated foot orthotic on frontal plane joint mechanics in healthy runners. J Appl Biomech 31(3):149–158CrossRefGoogle Scholar
  2. Alshawabka AZ, Liu A, Tyson SF, Jones RK (2014) The use of a lateral wedge insole to reduce knee loading when ascending and descending stairs in medial knee osteoarthritis patients. Clin Biomech (Bristol, Avon) 29(6):650–656CrossRefGoogle Scholar
  3. Banwell HA, Mackintosh S, Thewlis D, Landorf KB (2014) Consensus-based recommendations of Australian podiatrists for the prescription of foot orthoses for symptomatic flexible pes planus in adults. J Foot Ankle Res 7(1):49CrossRefGoogle Scholar
  4. Barrios JA, Butler RJ, Crenshaw JR, Royer TD, Davis IS (2013) Mechanical effectiveness of lateral foot wedging in medial knee osteoarthritis after 1 year of wear. J Orthop Res 31(5):659–664CrossRefGoogle Scholar
  5. Bonanno DR, Landorf KB, Menz HB (2011) Pressure-relieving properties of various shoe inserts in older people with plantar heel pain. Gait Posture 33(3):385–389CrossRefGoogle Scholar
  6. Bonanno DR, Zhang CY, Farrugia RC, Bull MG, Raspovic AM, Bird AR, Landorf KB (2012) The effect of different depths of medial heel skive on plantar pressures. J Foot Ankle Res 5:20CrossRefGoogle Scholar
  7. Bousie JA, Blanch P, McPoil TG, Vicenzino B (2013) Contoured in-shoe foot orthoses increase mid-foot plantar contact area when compared with a flat insert during cycling. J Sci Med Sport 16(1):60–64CrossRefGoogle Scholar
  8. Carroll M, Annabell ME, Rome K (2011) Reliability of capturing foot parameters using digital scanning and the neutral suspension casting technique. J Foot Ankle Res 4(1):9CrossRefGoogle Scholar
  9. Cheung RT, Chung RC, Ng GY (2011) Efficacies of different external controls for excessive foot pronation: a meta-analysis. Br J Sports Med 45(9):743–751. Erratum in: Br J Sports Med 2012; 46(5):373.Google Scholar
  10. Davis IS, Zifchock RA, Deleo AT (2008) A comparison of rearfoot motion control and comfort between custom and semicustom foot orthotic devices. J Am Podiatr Med Assoc 98(5):394–403CrossRefGoogle Scholar
  11. Faulí AC, Andrés CL, Rosas NP, Fernández MJ, Parreño EM, Barceló CO (2008) Physical evaluation of insole materials used to treat the diabetic foot. J Am Podiatr Med Assoc 98(3):229–238CrossRefGoogle Scholar
  12. Ghassemi A, Mossayebi AR, Jamshidi N, Naemi R, Karimi MT (2015) Manufacturing and finite element assessment of a novel pressure reducing insole for diabetic neuropathic patients. Australas Phys Eng Sci Med 38(1):63–70CrossRefGoogle Scholar
  13. Guldemond NA, Leffers P, Schaper NC, Sanders AP, Nieman F, Willems P, Walenkamp GH (2007) The effects of insole configurations on forefoot plantar pressure and walking convenience in diabetic patients with neuropathic feet. Clin Biomech (Bristol, Avon) 22(1):81–87CrossRefGoogle Scholar
  14. Halstead J, Chapman GJ, Gray JC, Grainger AJ, Brown S, Wilkins RA, Roddy E, Helliwell PS, Keenan AM, Redmond AC (2016) Foot orthoses in the treatment of symptomatic midfoot osteoarthritis using clinical and biomechanical outcomes: a randomised feasibility study. Clin Rheumatol 35(4):987–996CrossRefGoogle Scholar
  15. Hashmi F, Nester C, Wright C, Newton V, Lam S (2015) Characterising the biophysical properties of normal and hyperkeratotic foot skin. J Foot Ankle Res 8:35CrossRefGoogle Scholar
  16. Hsu WH, Lewis CL, Monaghan GM, Saltzman E, Hamill J, Holt KG (2014) Orthoses posted in both the forefoot and rearfoot reduce moments and angular impulses on lower extremity joints during walking. J Biomech 47(11):2618–2625CrossRefGoogle Scholar
  17. Janin M, Dupui P (2009) The effects of unilateral medial arch support stimulation on plantar pressure and center of pressure adjustment in young gymnasts. Neurosci Lett 461(3):245–248CrossRefGoogle Scholar
  18. Jones RK, Chapman GJ, Findlow AH, Forsythe L, Parkes MJ, Sultan J, Felson DT (2013a) A new approach to prevention of knee osteoarthritis: reducing medial load in the contralateral knee. J Rheumatol 40(3):309–315CrossRefGoogle Scholar
  19. Jones RK, Nester CJ, Richards JD, Kim WY, Johnson DS, Jari S, Laxton P, Tyson SF (2013b) A comparison of the biomechanical effects of valgus knee braces and lateral wedged insoles in patients with knee osteoarthritis. Gait Posture 37(3):368–372CrossRefGoogle Scholar
  20. Jones RK, Chapman GJ, Parkes MJ, Forsythe L, Felson DT (2015) The effect of different types of insoles or shoe modifications on medial loading of the knee in persons with medial knee osteoarthritis: a randomised trial. J Orthop Res 33(11):1646–1654CrossRefGoogle Scholar
  21. Landorf K, Keenan AM, Rushworth RL (2001) Foot orthosis prescription habits of Australian and New Zealand podiatric physicians. J Am Podiatr Med Assoc 91(4):174–183CrossRefGoogle Scholar
  22. Landorf KB, Keenan AM, Herbert RD (2006) Effectiveness of foot orthoses to treat plantar fasciitis: a randomized trial. Arch Intern Med 166(12):1305–1310CrossRefGoogle Scholar
  23. Lee PY, Landorf KB, Bonanno DR, Menz HB (2014) Comparison of the pressure-relieving properties of various types of forefoot pads in older people with forefoot pain. J Foot Ankle Res 7(1):18CrossRefGoogle Scholar
  24. Lewinson RT, Stefanyshyn DJ (2016) Prediction of knee joint moment changes during walking in response to wedged insole interventions. Proc Inst Mech Eng H 230(4):335–342CrossRefGoogle Scholar
  25. Lo WT, Yick KL, Ng SP, Yip J (2014) New methods for evaluating physical and thermal comfort properties of orthotic materials used in insoles for patients with diabetes. J Rehabil Res Dev 51(2):311–324CrossRefGoogle Scholar
  26. Luo GM et al (2011) Finite element analysis of heel pad with insoles. J Biomech 44(8):1559–1565CrossRefGoogle Scholar
  27. Menz HB, Auhl M, Tan JM, Levinger P, Roddy E, Munteanu SE (2016) Biomechanical effects of prefabricated foot orthoses and rocker-sole footwear in individuals with first metatarsophalangeal joint osteoarthritis. Arthritis Care Res 68(5):603–611CrossRefGoogle Scholar
  28. Mills K, Blanch P, Chapman AR, McPoil TG, Vicenzino B (2010) Foot orthoses and gait: a systematic review and meta-analysis of literature pertaining to potential mechanisms. Br J Sports Med 44(14):1035–1046CrossRefGoogle Scholar
  29. Murley GS, Landorf KB, Menz HB (2010) Do foot orthoses change lower limb muscle activity in flat-arched feet towards a pattern observed in normal-arched feet? Clin Biomech (Bristol, Avon) 25(7):728–736CrossRefGoogle Scholar
  30. Najafi B, Wrobel JS, Burns J (2014) Mechanism of orthotic therapy for the painful cavus foot deformity. J Foot Ankle Res 7(1):2CrossRefGoogle Scholar
  31. Nester CJ, van der Linden ML, Bowker P (2003) Effect of foot orthoses on the kinematics and kinetics of normal walking gait. Gait Posture 17(2):180–187CrossRefGoogle Scholar
  32. Owings TM, Woerner JL, Frampton JD, Cavanagh PR, Botek G (2008) Custom therapeutic insoles based on both foot shape and plantar pressure measurement provide enhanced pressure relief. Diabetes Care 31(5):839–844CrossRefGoogle Scholar
  33. Perhamre S, Lundin F, Klässbo M, Norlin R (2012) A heel cup improves the function of the heel pad in Sever’s injury: effects on heel pad thickness, peak pressure and pain. Scand J Med Sci Sports 22(4):516–522CrossRefGoogle Scholar
  34. Price C, Parker D, Nester C (2016) Validity and repeatability of three in-shoe pressure measurement systems. Gait Posture 46:69–74CrossRefGoogle Scholar
  35. Redmond AC, Landorf KB, Keenan AM (2009) Contoured, prefabricated foot orthoses demonstrate comparable mechanical properties to contoured, customised foot orthoses: a plantar pressure study. J Foot Ankle Res 2:20CrossRefGoogle Scholar
  36. Rupérez MJ, Alemany S, Monserrat C, Olaso J, Alcañíz M, González JC (2009) A study of the viability of obtaining a generic animation of the foot while walking for the virtual testing of footwear using dorsal pressures. J Biomech 42(13):2040–2046CrossRefGoogle Scholar
  37. Sangeux M, Pillet H, Skalli W (2014) Which method of hip joint centre localisation should be used in gait analysis? Gait Posture 40(1):20–25CrossRefGoogle Scholar
  38. Song Q, Xu K, Yu B, Zhang C, Sun W, Mao D (2015) Could insoles offload pressure? An evaluation of the effects of arch-supported functional insoles on plantar pressure distribution during race walking. Res Sports Med 23(3):278–288CrossRefGoogle Scholar
  39. Spirka TA, Erdemir A, Ewers Spaulding S, Yamane A, Telfer S, Cavanagh PR (2014) Simple finite element models for use in the design of therapeutic footwear. J Biomech 47(12):2948–2955CrossRefGoogle Scholar
  40. Sweeney D, Nester C, Preece S, Mickle K (2015) Effect of antipronation foot orthosis geometry on compression of heel and arch soft tissues. J Rehabil Res Dev 52(5):543–551CrossRefGoogle Scholar
  41. Telfer S, Abbott M, Steultjens MP, Woodburn J (2013) Dose-response effects of customised foot orthoses on lower limb kinematics and kinetics in pronated foot type. J Biomech 46(9):1489–1495CrossRefGoogle Scholar
  42. Telfer S, Erdemir A, Woodburn J, Cavanagh PR (2014a) What has finite element analysis taught us about diabetic foot disease and its management? A systematic review. PLoS One 9(10):e109994CrossRefGoogle Scholar
  43. Telfer S, Woodburn J, Turner DE (2014b) Measurement of functional heel pad behaviour in-shoe during gait using orthotic embedded ultrasonography. Gait Posture 39(1):328–332CrossRefGoogle Scholar
  44. Tenten-Diepenmaat M, Dekker J, Steenbergen M, Huybrechts E, Roorda LD, van Schaardenburg D, Bus SA, van der Leeden M (2016) In-shoe plantar pressure measurements for the evaluation and adaptation of foot orthoses in patients with rheumatoid arthritis: A proof of concept study. Gait Posture 45:45–50CrossRefGoogle Scholar
  45. Ulbrecht JS, Hurley T, Mauger DT, Cavanagh PR (2014) Prevention of recurrent foot ulcers with plantar pressure-based in-shoe orthoses: the CareFUL prevention multicenter randomized controlled trial. Diabetes Care 37(7):1982–1989CrossRefGoogle Scholar
  46. Williams AE, Davies S, Graham A, Dagg A, Longrigg K, Lyons C, Bowen C, North West Clinical Effectiveness Group for the Foot in Rheumatic Diseases (NWCEG) (2011) Guidelines for the management of the foot health problems associated with rheumatoid arthritis. Musculoskeletal Care 9(2):86–92CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Health SciencesUniversity of SalfordSalfordUK

Section editors and affiliations

  • Sebastian I. Wolf
    • 1
  1. 1.Movement Analysis LaboratoryClinic for Orthopedics and Trauma Surgery; Center for Orthopedics, Trauma Surgery and Spinal Cord Injury;Heidelberg University HospitalHeidelbergGermany

Personalised recommendations