Advertisement

Influence of Prosthetic Socket Design and Fitting on Gait

  • Arezoo Eshraghi
  • Jan Andrysek
Reference work entry

Abstract

This chapter deals with lower-limb prostheses and, more specifically, the relationship between socket design and the quality of gait and mobility. Prosthetic sockets and suspension systems provide an intimate contact with the residual limb, and their interaction is important for overall comfort, fit, and mobility function. Even though technological advances have led to the enhancement of socket/limb interfaces, prosthesis users still suffer from a variety of problems, particularly related to the high and repetitive loading of the limb during gait. In this chapter, socket designs are reviewed, along with clinical issues relating to their use. This is followed by an examination of the effect of the socket/limb interface on the quality of gait. The chapter concludes with future perspectives and trends in prosthetic/limb interface approaches and technology.

Keywords

Prostheses Amputation Fit Gait Socket Rehabilitation Walking Motion analysis Mobility Residual limb Transtibial Transfemoral Partial foot 

References

  1. Abu Osman N, Spence W, Solomonidis S, Paul J, Weir A (2010) The patellar tendon bar! Is it a necessary feature? Med Eng Phys 32(7):760–765CrossRefGoogle Scholar
  2. Alvarez-Camacho M, Urrusti J, Acero MC, Galván D-GC, Rodriguez-Reyes G, Mendoza-Cruz F (2014) Device to assess in-socket pressure distribution for partial foot amputation. Rev Invest Clin 66:S131–S141Google Scholar
  3. Andrysek J, Redekop S, Naumann S (2007) Preliminary evaluation of an automatically stance-phase controlled pediatric prosthetic knee joint using quantitative gait analysis. Arch Phys Med Rehabil 88(4):464–470CrossRefGoogle Scholar
  4. Åström I, Stenström A (2004) Effect on gait and socket comfort in unilateral trans-tibial amputees after exchange to a polyurethane concept. Prosthetics Orthot Int 28(1):28–36Google Scholar
  5. Baars E, Geertzen J (2005) Literature review of the possible advantages of silicon liner socket use in trans-tibial prostheses. Prosthetics Orthot Int 29(1):27–37CrossRefGoogle Scholar
  6. Bateni H, Olney SJ (2002) Kinematic and kinetic variations of below-knee amputee gait. JPO: J Prosthet Orthot 14(1):2–10Google Scholar
  7. Beil TL, Street GM (2004) Comparison of interface pressures with pin and suction suspension systems. J Rehabil Res Dev 41(6):821–828CrossRefGoogle Scholar
  8. Beil TL, Street GM, Covey SJ (2002) Interface pressures during ambulation using suction and vacuum-assisted prosthetic sockets. J Rehabil Res Dev 39(6):693–700Google Scholar
  9. Board W, Street G, Caspers C (2001) A comparison of trans-tibial amputee suction and vacuum socket conditions. Prosthetics Orthot Int 25(3):202–209CrossRefGoogle Scholar
  10. Boutaayamou M, Schwartz C, Stamatakis J, Denoël V, Maquet D, Forthomme B, Croisier J-L, Macq B, Verly JG, Garraux G (2015) Development and validation of an accelerometer-based method for quantifying gait events. Med Eng Phys 37(2):226–232CrossRefGoogle Scholar
  11. Boutwell E, Stine R, Hansen A, Tucker K, Gard S (2012) Effect of prosthetic gel liner thickness on gait biomechanics and pressure distribution within the transtibial socket. J Rehabil Res Dev 49(2):227–240CrossRefGoogle Scholar
  12. Brunelli S, Delussu AS, Paradisi F, Pellegrini R, Traballesi M (2013) A comparison between the suction suspension system and the hypobaric Iceross Seal-In® X5 in transtibial amputees. Prosthetics Orthot Int 37(6):436–444CrossRefGoogle Scholar
  13. Childers WL, Siebert S (2015) Marker-based method to measure movement between the residual limb and a transtibial prosthetic socket. Prosthetics Orthot Int 0309364615610660. 40(6):720–768Google Scholar
  14. Commean PK, Smith KE, Vannier MW (1997) Lower extremity residual limb slippage within the prosthesis. Arch Phys Med Rehabil 78(5):476–485CrossRefGoogle Scholar
  15. Convery P, Murray K (2000) Ultrasound study of the motion of the residual femur within a trans-femoral socket during gait. Prosthetics Orthot Int 24(3):226–232CrossRefGoogle Scholar
  16. Dillon MP, Barker TM (2006) Can partial foot prostheses effectively restore foot length? Prosthetics Orthot Int 30(1):17–23CrossRefGoogle Scholar
  17. Dillon MP, Barker TM (2008) Comparison of gait of persons with partial foot amputation wearing prosthesis to matched control group: observational study. J Rehabil Res Dev 45(9):1317CrossRefGoogle Scholar
  18. Dou P, Jia X, Suo S, Wang R, Zhang M (2006) Pressure distribution at the stump/socket interface in transtibial amputees during walking on stairs, slope and non-flat road. Clin Biomech 21(10):1067–1073.  https://doi.org/10.1016/j.clinbiomech.2006.06.004CrossRefGoogle Scholar
  19. Eshraghi A, Abu Osman NA, Gholizadeh H, Karimi M, Ali S (2012) Pistoning assessment in lower limb prosthetic sockets. Prosthetics Orthot Int 36(1):15–24CrossRefGoogle Scholar
  20. Eshraghi A, Abu Osman NA, Gholizadeh H, Ahmadian J, Rahmati B, Abas WABW (2013a) Development and evaluation of new coupling system for lower limb prostheses with acoustic alarm system. Scientific Reports 3.  https://doi.org/10.1038/srep02270
  21. Eshraghi A, Abu Osman NA, Gholizadeh H, Ali S, Saevarsson SK, Abas WABW (2013b) An experimental study of the interface pressure profile during level walking of a new suspension system for lower limb amputees. Clin Biomech 28(1):55–60.  https://doi.org/10.1016/j.clinbiomech.2012.10.002CrossRefGoogle Scholar
  22. Esposito ER, Whitehead JMA, Wilken JM (2015) Sound limb loading in individuals with unilateral transfemoral amputation across a range of walking velocities. Clin Biomech 30(10):1049–1055CrossRefGoogle Scholar
  23. Fairley M (2004) MAS socket: a transfemoral revolution. O&P J 6. http://www.oandp.com/articles/2004-06_03.asp
  24. Faustini MC, Crawford RH, Neptune RR, Rogers WE, Bosker G (2005) Design and analysis of orthogonally compliant features for local contact pressure relief in transtibial prostheses. J Biomech Eng 127(6):946–951CrossRefGoogle Scholar
  25. Fergason J, Smith DG (1999) Socket considerations for the patient with a transtibial amputation. Clin Orthop Relat Res 361:76–84CrossRefGoogle Scholar
  26. Fernández A, Formigo J (2005) Are Canadian prostheses used? A long-term experience. Prosthetics Orthot Int 29(2):177–181CrossRefGoogle Scholar
  27. Fillauer CE, Pritham CH, Fillauer KD (1989) Evolution and development of the silicone suction socket (3S) for below-knee prostheses. JPO: J Prosthet and Orthot 1(2):92–103Google Scholar
  28. Frossard L, Hagberg K, Häggström E, Gow DL, Brånemark R, Pearcy M (2010) Functional outcome of transfemoral amputees fitted with an osseointegrated fixation: temporal gait characteristics. JPO: J Prosthet Orthot 22(1):11–20Google Scholar
  29. Furse A, Cleghorn W, Andrysek J (2011) Improving the gait performance of nonfluid-based swing-phase control mechanisms in transfemoral prostheses. IEEE Trans Biomed Eng 58(8):2352–2359CrossRefGoogle Scholar
  30. Gerschutz MJ, Denune JA, Colvin JM, Schober G (2010) Elevated vacuum suspension influence on lower limb amputee’s residual limb volume at different vacuum pressure settings. JPO: J Prosthet Orthot 22(4):252–256Google Scholar
  31. Gholizadeh H, Osman NAA, Lúvíksdóttir ÁG, Eshraghi A, Kamyab M, Abas WABW (2011) A new approach for the pistoning measurement in transtibial prosthesis. Prosthetics Orthot Int 35(4):360–364CrossRefGoogle Scholar
  32. Gholizadeh H, Abu Osman N, Kamyab M, Eshraghi A, Lúvíksdóttir A, Wan Abas WAB (2012a) Clinical evaluation of two prosthetic suspension systems in a bilateral transtibial amputee. Am J Phys Med Rehabil 91(10):894–898CrossRefGoogle Scholar
  33. Gholizadeh H, Abu Osman NA, Eshraghi A, Ali S, S’varsson SK, WAB WA, Pirouzi GH (2012b) Transtibial prosthetic suspension: less pistoning versus easy donning and doffing. J Rehabil Res Dev 49(9):1321–1330CrossRefGoogle Scholar
  34. Goujon H, Bonnet X, Sautreuil P, Maurisset M, Darmon L, Fode P, Lavaste F (2006) A functional evaluation of prosthetic foot kinematics during lower-limb amputee gait. Prosthetics Orthot Int 30(2):213–223CrossRefGoogle Scholar
  35. Greenwald RM, Dean RC, Board WJ (2003) Volume management: smart variable geometry socket (SVGS) technology for lower-limb prostheses. JPO: J Prosthet Orthot 15(3):107–112Google Scholar
  36. Hachisuka K, Dozono K, Ogata H, Ohmine S, Shitama H, Shinkoda K (1998b) Total surface bearing below-knee prosthesis: advantages, disadvantages, and clinical implications. Arch Phys Med Rehabil 79(7):783–789CrossRefGoogle Scholar
  37. Hagberg K, Brånemark R (2009) One hundred patients treated with osseointegrated transfemoral amputation prostheses – rehabilitation perspective. J Rehabil Res Dev 46(3)Google Scholar
  38. Hagberg K, Häggström E, Uden M, Brånemark R (2005) Socket versus bone-anchored trans-femoral prostheses: hip range of motion and sitting comfort. Prosthetics Orthot Int 29(2):153–163CrossRefGoogle Scholar
  39. Hagberg K, Brånemark R, Gunterberg B, Rydevik B (2008) Osseointegrated trans-femoral amputation prostheses: prospective results of general and condition-specific quality of life in 18 patients at 2-year follow-up. Prosthetics Orthot Int 32(1):29–41CrossRefGoogle Scholar
  40. Han TR, Chung SG, Shin HI (2003) Gait patterns of transtibial amputee patients walking indoors barefoot. Am J Phys Med Rehabil 82(2):96–100CrossRefGoogle Scholar
  41. Isakov E, Keren O, Benjuya N (2000) Trans-tibial amputee gait: time-distance parameters and EMG activity. Prosthetics Orthot Int 24(3):216–220CrossRefGoogle Scholar
  42. Jia X, Zhang M, Lee WC (2004) Load transfer mechanics between trans-tibial prosthetic socket and residual limb—dynamic effects. J Biomech 37(9):1371–1377CrossRefGoogle Scholar
  43. Jin Y-a, Plott J, Chen R, Wensman J, Shih A (2015) Additive manufacturing of custom orthoses and prostheses – a review. Procedia CIRP 36:199–204CrossRefGoogle Scholar
  44. Kahle JT, Highsmith MJ (2014) Transfemoral interfaces with vacuum assisted suspension comparison of gait, balance, and subjective analysis: ischial containment versus brimless. Gait Posture 40(2):315–320CrossRefGoogle Scholar
  45. Kaufman KR, Frittoli S, Frigo CA (2012) Gait asymmetry of transfemoral amputees using mechanical and microprocessor-controlled prosthetic knees. Clin Biomech 27(5):460–465CrossRefGoogle Scholar
  46. Klute GK, Berge JS, Biggs W, Pongnumkul S, Popovic Z, Curless B (2011) Vacuum-assisted socket suspension compared with pin suspension for lower extremity amputees: effect on fit, activity, and limb volume. Arch Phys Med Rehabil 92(10):1570–1575CrossRefGoogle Scholar
  47. Kristinsson Ö (1993) The ICEROSS concept: a discussion of a philosophy. Prosthetics Orthot Int 17(1):49–55CrossRefGoogle Scholar
  48. Laing S, Lee PV, Goh JC (2011) Engineering a trans-tibial prosthetic socket for the lower limb amputee. Ann Acad Med Singap 40(5):252Google Scholar
  49. Lemaire ED, Fisher FR (1994) Osteoarthritis and elderly amputee gait. Arch Phys Med Rehabil 75(10):1094–1099CrossRefGoogle Scholar
  50. Lin C-C, Chang C-H, Wu C-L, Chung K-C, Liao I (2004) Effects of liner stiffness for trans-tibial prosthesis: a finite element contact model. Med Eng Phys 26(1):1–9CrossRefGoogle Scholar
  51. Ludwigs E, Bellmann M, Schmalz T, Blumentritt S (2010) Biomechanical differences between two exoprosthetic hip joint systems during level walking. Prosthetics Orthot Int 34(4):449–460CrossRefGoogle Scholar
  52. Lundberg M, Hagberg K, Bullington J (2011) My prosthesis as a part of me: a qualitative analysis of living with an osseointegrated prosthetic limb. Prosthetics Orthot Int 35(2):207–214CrossRefGoogle Scholar
  53. Madsen MT, Hailer J, Commean PK, Vannier MW (2000) A device for applying static loads to prosthetic limbs of transtibial amputees during spiral CT examination. J Rehabil Res Dev 37(4):383–387Google Scholar
  54. Mak AF, Zhang M, Boone DA (2001) State-of-the-art research in lower-limb prosthetic biomechanics-socket interface: a review. J Rehabil Res Dev 38(2):161–174Google Scholar
  55. McNealy LL, Gard SA (2008) Effect of prosthetic ankle units on the gait of persons with bilateral trans-femoral amputations. Prosthetics Orthot Int 32(1):111–126CrossRefGoogle Scholar
  56. Melzer I, Yekutiel M, Sukenik S (2001) Comparative study of osteoarthritis of the contralateral knee joint of male amputees who do and do not play volleyball. J Rheumatol 28(1):169–172Google Scholar
  57. Montero-Odasso M, Schapira M, Varela C, Pitteri C, Soriano ER, Kaplan R, Camera LA, Mayorga L (2004) Gait velocity in senior people an easy test for detecting mobility impairment in community elderly. J Nutr Health Aging 8(5):340–343Google Scholar
  58. Montero-Odasso M, Schapira M, Soriano ER, Varela M, Kaplan R, Camera LA, Mayorga LM (2005) Gait velocity as a single predictor of adverse events in healthy seniors aged 75 years and older. J Gerontol Ser A Biol Med Sci 60(10):1304–1309CrossRefGoogle Scholar
  59. Narita H, Yokogushi K, Shi S, Kakizawa M, Nosaka T (1997) Suspension effect and dynamic evaluation of the total surface bearing (TSB) trans-tibial prosthesis: a comparison with the patellar tendon bearing (PTB) trans-tibial prosthesis. Prosthetics Orthot Int 21(3):175–178Google Scholar
  60. Nolan L, Lees A (2000) The functional demands on the intact limb during walking for active trans-femoral and trans-tibial amputees. Prosthetics Orthot Int 24(2):117–125CrossRefGoogle Scholar
  61. Ogawa A, Obinata G, Hase K, Dutta A, Nakagawa M (2008) Design of lower limb prosthesis with contact pressure adjustment by MR fluid. In: Engineering in Medicine and Biology Society, EMBS 2008. 30th Annual International Conference of the IEEE. IEEE, pp 330–333.Google Scholar
  62. Papaioannou G, Mitrogiannis C, Nianios G, Fiedler G (2010) Assessment of amputee socket–stump–residual bone kinematics during strenuous activities using Dynamic Roentgen Stereogrammetric Analysis. J Biomech 43(5):871–878CrossRefGoogle Scholar
  63. Pinzur M, Asselmeier M, Smith D (1991) Dynamic electromyography in active and limited walking below-knee amputees. Orthopedics 14 (5):535–537; .Discussion 537–538Google Scholar
  64. Pirouzi G, Abu Osman NA, Oshkour AA, Ali S, Gholizadeh H, Wan Abas WA (2014) Development of an air pneumatic suspension system for transtibial prostheses. Sensors 14(9):16754–16765CrossRefGoogle Scholar
  65. Polliack A, Sieh R, Craig D, Landsberger S, McNeil D, Ayyappa E (2000) Scientific validation of two commercial pressure sensor systems for prosthetic socket fit. Prosthetics Orthot Int 24(1):63–73CrossRefGoogle Scholar
  66. Powers CM, Rao S, Perry J (1998) Knee kinetics in trans-tibial amputee gait. Gait Posture 8(1):1–7CrossRefGoogle Scholar
  67. Radcliffe CW, Foort J, Inman VT, Eberhart H (1961) The patellar-tendon-bearing below-knee prosthesis. University of California, Biomechanics LaboratoryGoogle Scholar
  68. Rogers B, Bosker G, Faustini M, Walden G, Neptune RR, Crawford R (2008) Case report: variably compliant transtibial prosthetic socket fabricated using solid freeform fabrication. JPO: J Prosthet Orthot 20(1):1–7Google Scholar
  69. Rusaw D, Ramstrand N (2010) Sagittal plane position of the functional joint centre of prosthetic foot/ankle mechanisms. Clin Biomech 25 (7):713–720.  https://doi.org/10.1016/j.clinbiomech.2010.04.005
  70. Russell KA, Palmieri RM, Zinder SM, Ingersoll CD (2006) Sex differences in valgus knee angle during a single-leg drop jump. J Athl Train 41(2):166–171Google Scholar
  71. Safari MR, Meier MR (2015) Systematic review of effects of current transtibial prosthetic socket designs – part 2: quantitative outcomes. J Rehabil Res Dev 52(5):509–528CrossRefGoogle Scholar
  72. Sagawa Y, Turcot K, Armand S, Thevenon A, Vuillerme N, Watelain E (2011) Biomechanics and physiological parameters during gait in lower-limb amputees: a systematic review. Gait Posture 33(4):511–526CrossRefGoogle Scholar
  73. Sanders JE, Fatone S (2011) Residual limb volume change: systematic review of measurement and management. J Rehabil Res Dev 48(8):949CrossRefGoogle Scholar
  74. Sanders JE, Bell DM, Okumura RM, Dralle AJ (1998) Effects of alignment changes on stance phase pressures and shear stresses on transtibial amputees: measurements from 13 transducer sites. IEEE Trans Rehabil Eng 6(1):21–31CrossRefGoogle Scholar
  75. Sanders J, Jacobsen A, Fergason J (2006a) Effects of fluid insert volume changes on socket pressures and shear stresses: Case studies from two trans-tibial amputee subjects. Prosthetics Orthot Int 30(3):257–269CrossRefGoogle Scholar
  76. Sanders JE, Karchin A, Fergason JR, Sorenson EA (2006b) A noncontact sensor for measurement of distal residual-limb position during walking. J Rehabil Res Dev 43(4):509CrossRefGoogle Scholar
  77. Sanders JE, Harrison DS, Allyn KJ, Myers TR, Ciol MA, Tsai EC (2012) How do sock ply changes affect residual-limb fluid volume in people with transtibial amputation? J Rehabil Res Dev 49(2):241–256.  https://doi.org/10.1682/jrrd.2011.02.0022CrossRefGoogle Scholar
  78. Sanders JE, Cagle JC, Harrison DS, Myers TR, Allyn KJ (2013) How does adding and removing liquid from socket bladders affect residual limb fluid volume? J Rehabil Res Dev 50(6):845CrossRefGoogle Scholar
  79. Sanders JE, Hartley TL, Phillips RH, Ciol MA, Hafner BJ, Allyn KJ, Harrison DS (2015) Does temporary socket removal affect residual limb fluid volume of trans-tibial amputees? Prosthetics Orthot Int.  https://doi.org/10.1177/0309364614568413
  80. Sanderson DJ, Martin PE (1997) Lower extremity kinematic and kinetic adaptations in unilateral below-knee amputees during walking. Gait Posture 6(2):126–136CrossRefGoogle Scholar
  81. Sansam K, Neumann V, O’Connor R, Bhakta B (2009) Predicting walking ability following lower limb amputation: a systematic review of the literature. J Rehabil Med 41(8):593–603CrossRefGoogle Scholar
  82. Schmalz T, Blumentritt S, Jarasch R (2002) Energy expenditure and biomechanical characteristics of lower limb amputee gait: The influence of prosthetic alignment and different prosthetic components. Gait Posture 16 (3):255-263.  https://doi.org/10.1016/S0966-6362(02)00008-5
  83. Segal AD, Orendurff MS, Klute GK, McDowell ML, Pecoraro JA, Shofer J, Czerniecki JM (2006) Kinematic and kinetic comparisons of transfemoral amputee gait using C-Leg and Mauch SNS prosthetic knees. J Rehabil Res Dev 43(7):857–870CrossRefGoogle Scholar
  84. Sewell P, Noroozi S, Vinney J, Andrews S (2000) Developments in the trans-tibial prosthetic socket fitting process: a review of past and present research. Prosthetics Orthot Int 24(2):97–107CrossRefGoogle Scholar
  85. Seymour R (2002) Prosthetics and orthotics: lower limb and spinal. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  86. Silverman AK, Fey NP, Portillo A, Walden JG, Bosker G, Neptune RR (2008) Compensatory mechanisms in below-knee amputee gait in response to increasing steady-state walking speeds. Gait Posture 28(4):602–609CrossRefGoogle Scholar
  87. Silver-Thorn MB, Steege JW, Childress DS (1996) A review of prosthetic interface stress investigations. J Rehabil Res Dev 33:253–266Google Scholar
  88. Sjödahl C, Jarnlo G-B, Söderberg B, Persson B (2002) Kinematic and kinetic gait analysis in the sagittal plane of trans-femoral amputees before and after special gait re-education. Prosthetics Orthot Int 26(2):101–112CrossRefGoogle Scholar
  89. Smith DG, Michael JW, Bowker JH, Surgeons AAoO (2004) Atlas of amputations and limb deficiencies: surgical, prosthetic, and rehabilitation principles. American Academy of Orthopaedic Surgeons, RosemontGoogle Scholar
  90. Söderberg B, Ryd L, Persson BM (2003) Roentgen stereophotogrammetric analysis of motion between the bone and the socket in a transtibial amputation prosthesis: a case study. JPO: J Prosthet Orthot 15(3):95–99Google Scholar
  91. Staats TB, Lundt J (1987) The UCLA total surface bearing suction below-knee prosthesis. Clin Prosthet Orthot 11(3):118–130Google Scholar
  92. Su P-F, Gard SA, Lipschutz RD, Kuiken TA (2007) Gait characteristics of persons with bilateral transtibial amputations. J Rehabil Res Dev 44(4):491–501CrossRefGoogle Scholar
  93. Taheri A, Karimi MT (2012) Evaluation of the gait performance of above-knee amputees while walking with 3R20 and 3R15 knee joints. J Res Med Sci 17(3):258Google Scholar
  94. Telfer S, Pallari J, Munguia J, Dalgarno K, McGeough M, Woodburn J (2012) Embracing additive manufacture: implications for foot and ankle orthosis design. BMC Musculoskelet Disord 13(1):1CrossRefGoogle Scholar
  95. Thiele J, Westebbe B, Bellmann M, Kraft M (2014) Designs and performance of microprocessor-controlled knee joints. Biomed Te/Biomed Eng 59(1):65–77Google Scholar
  96. Torburn L, Powers CM, Guiterrez R, Perry J (1995) Energy expenditure during ambulation in dysvascular and traumatic below-knee amputees: a comparison of five prosthetic feet. J Rehabil Res Dev 32:111–111Google Scholar
  97. Traballesi M, Delussu AS, Averna T, Pellegrini R, Paradisi F, Brunelli S (2011) Energy cost of walking in transfemoral amputees: comparison between Marlo Anatomical Socket and Ischial Containment Socket. Gait Posture 34(2):270–274CrossRefGoogle Scholar
  98. Traballesi M, Delussu A, Fusco A, Iosa M, Averna T, Pellegrini R, Brunelli S (2012) Residual limb wounds or ulcers heal in transtibial amputees using an active suction socket system. A randomized controlled study. Eur J Phys Rehabil Med 48(4):613–623Google Scholar
  99. Van de Meent H, Hopman MT, Frölke JP (2013) Walking ability and quality of life in subjects with transfemoral amputation: a comparison of osseointegration with socket prostheses. Arch Phys Med Rehabil 94(11):2174–2178CrossRefGoogle Scholar
  100. Van der Linden M, Solomonidis S, Spence W, Li N, Paul J (1999) A methodology for studying the effects of various types of prosthetic feet on the biomechanics of trans-femoral amputee gait. J Biomech 32(9):877–889CrossRefGoogle Scholar
  101. Williams R, Porter D, Roberts V, Regan J (1992) Triaxial force transducer for investigating stresses at the stump/socket interface. Med Biol Eng Comput 30(1):89–96CrossRefGoogle Scholar
  102. Winter DA, Sienko SE (1988) Biomechanics of below-knee amputee gait. J Biomech 21(5):361–367CrossRefGoogle Scholar
  103. Wirta RW, Golbranson FL, Mason R, Calvo K (1990) Analysis of below-knee suspension systems: effect on gait. J Rehabil Res Dev 27(4):385–396CrossRefGoogle Scholar
  104. Yigiter K, Sener G, Bayar K (2002) Comparison of the effects of patellar tendon bearing and total surface bearing sockets on prosthetic fitting and rehabilitation. Prosthetics Orthot Int 26(3):206–212CrossRefGoogle Scholar
  105. Zaffer SM, Braddom RL, Conti A, Goff J, Bokma D (1999) Total hip disarticulation prosthesis with suction socket: report of two cases1. Am J Phys Med Rehabil 78(2):160–162CrossRefGoogle Scholar
  106. Zhang M, Turner-Smith A, Roberts V, Tanner A (1996) Frictional action at lower limb/prosthetic socket interface. Med Eng Phys 18(3):207–214CrossRefGoogle Scholar
  107. Zhang M, Turner-Smith A, Tanner A, Roberts V (1998) Clinical investigation of the pressure and shear stress on the trans-tibial stump with a prosthesis. Med Eng Phys 20(3):188–198CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Holland Bloorview Kids Rehabilitation HospitalBloorview Research InstituteTorontoCanada
  2. 2.Institute of Biomaterial and Biomedical EngineeringUniversity of TorontoTorontoCanada

Section editors and affiliations

  • Sebastian I. Wolf
    • 1
  1. 1.Movement Analysis LaboratoryClinic for Orthopedics and Trauma Surgery; Center for Orthopedics, Trauma Surgery and Spinal Cord Injury;Heidelberg University HospitalHeidelbergGermany

Personalised recommendations