Skip to main content

Parabolic Flight

  • 89 Accesses

“Gravity is a habit that is hard to shake off.” – Terry Pratchett

Synonyms

Short-duration reduced-gravity flight; “The Vomit Comet”; Zero-G flight

Definition

Short-term weightlessness created by allowing an airplane to perform a “free fall” during a parabolic trajectory.

Weightlessness can be defined as absence of any external mechanical contact forces. Accordingly, an object in a free-fall condition is weightless when exclusively affected by gravity. Therefore, short-term real weightlessness is created within Earth’s atmosphere by flying an airplane along a parabolic trajectory correcting for air resistance. The parabolic flight platform has been used to study immediate effects of weightlessness on human physiology, physical, or combustion science, as well as astronaut training since the late 1950s (Haber and Haber 2009). Depending on the aircraft and flight pattern, anywhere from 10 to 45 s of weightlessness is generated, which is preceded and followed by an acceleration and a...

This is a preview of subscription content, log in via an institution.

Abbreviations

CNES:

Centre National d’Etudes Spatiales

CO:

Cardiac output

CVP:

Central venous pressure

ESA:

European Space Agency

G:

unit of gravitational force; 1G = acceleration due to gravity at the Earth’s surface = 9.80665 m/s2

HR:

Heart rate

ICP:

Intra cerebral pressure

NASA:

National Aeronautics and Space Administration

SV:

Stroke volume

TPR:

Total peripheral resistance

References

  • Bailliart O, Capderou A, Cholley BP, Kays C, Riviere D, Techoueyres P, Lachaud JL, Vaida P (1998) ‘Changes in lower limb volume in humans during parabolic flight’, J Appl Physiol (1985), 85:2100–5

    Google Scholar 

  • Buckey JC Jr, Gaffney FA, Lane LD, Levine BD, Watenpaugh DE, Wright SJ et al (1996) Central venous pressure in space. J Appl Physiol 81(1):19–25

    Article  Google Scholar 

  • Eckberg DL, Halliwill JR, Beightol LA, Brown TE, Taylor JA, Goble R (2010) Human vagal baroreflex mechanisms in space. J Physiol 588(Pt 7):1129–1138

    Article  Google Scholar 

  • Einstein A (1915) Die Feldgleichungen der Gravitation. Königlich Preussische Akademie der Wissenschaften, Berlin, pp 844–847

    MATH  Google Scholar 

  • Golding JF, Paillard AC, Normand H, Besnard S, Denise P (2017) Prevalence, predictors, and prevention of motion sickness in zero-G parabolic flights. Aerosp Med Hum Perform 88(1):3–9

    Article  Google Scholar 

  • Haber F, Haber H (2009) Classics in space medicine. Possible methods of producing the gravity-free state for medical research. Aviat Space Environ Med 80(12):1077

    Article  Google Scholar 

  • Hargens AR, Bhattacharya R, Schneider SM (2013) Space physiology VI: exercise, artificial gravity, and countermeasure development for prolonged space flight. Eur J Appl Physiol 113(9):2183–2192

    Article  Google Scholar 

  • Lawley JS, Petersen LG, Howden EJ, Sarma S, Cornwell WK, Zhang R et al (2017) Effect of gravity and microgravity on intracranial pressure. J Physiol 595(6):2115–2127

    Article  Google Scholar 

  • Lindley EJ, Brown BH, Barber DC, Grundy D, Knowles R, McArdle FJ, Wilson AJ (1992) ‘Monitoring body fluid distribution in microgravity using impedance tomography (APT (applied potential tomography))’, Clin Phys Physiol Meas, 13 Suppl A: 181–4

    Google Scholar 

  • Newton I (1687) Philosophiæ naturalis prinathematica. S Pepys Reg Soc Præses, London

    Book  Google Scholar 

  • Norsk P (2014) Blood pressure regulation IV: adaptive responses to weightlessness. Eur J Appl Physiol 114(3):481–497

    Article  Google Scholar 

  • Petersen LG, Damgaard M, Petersen JC, Norsk P (2011) Mechanisms of increase in cardiac output during acute weightlessness in humans. J Appl Physiol 111(2):407–411

    Article  Google Scholar 

  • Pletser V (2016) European aircraft parabolic flights for microgravity research, applications and exploration: a review. REACH 1:11–19

    Article  Google Scholar 

  • Videbaek R, Norsk P (1997) Atrial distension in humans during microgravity induced by parabolic flights. J Appl Physiol 83(6):1862–1866

    Article  Google Scholar 

  • Walpole SC, Prieto-Merino D, Edwards P, Cleland J, Stevens G, Roberts I (2012) The weight of nations: an estimation of adult human biomass. BMC Public Health 12:439

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lonnie G. Petersen .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Petersen, J.C.G., Hargens, A.R., Petersen, L.G. (2020). Parabolic Flight. In: Young, L., Sutton, J. (eds) Encyclopedia of Bioastronautics. Springer, Cham. https://doi.org/10.1007/978-3-319-10152-1_62-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10152-1_62-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10152-1

  • Online ISBN: 978-3-319-10152-1

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Parabolic Flight
    Published:
    30 November 2020

    DOI: https://doi.org/10.1007/978-3-319-10152-1_62-2

  2. Original

    Parabolic Flight
    Published:
    04 February 2020

    DOI: https://doi.org/10.1007/978-3-319-10152-1_62-1