Encyclopedia of Bioastronautics

Living Edition
| Editors: Laurence R. Young, Jeffrey P. Sutton

Medical School Programs

  • Marlene Y. MacLeishEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-10152-1_100-1

Definition

Medical school bioastronautics education is the multidisciplinary engagement of scientists, physicians, and space explorers to provide specialized training in bioastronautics science and to impact medical care on Earth by transferring the solutions to patients suffering from similar conditions, including osteoporosis, muscle wasting, shift-work-related sleep disorders, balance disorders, and cardiovascular system problems.

Introduction

Few medical schools across the globe have structured bioastronautics research programs. Most bioastronautics research takes place among educational and research organizations, including national space agencies/centers/institutes, universities/institutes with specialized biology in space programs, space systems laboratories, astronaut/cosmonaut training centers, graduate schools offering research degree programs, and various corporate entities invested in space exploration.

Bioastronautics research programs in Canada and the United Kingdom (UK)...

Keywords

Bioastronautics Medical Schools Clinical Space Flight Risk USA Europe Health Sleep circadian disorders Behavioral Mental Physical Risks Physiology Solar Particle Radiation Gravity International Space Station Mars500 Cardiovascular Transcranial Doppler Head-down tilt 
This is a preview of subscription content, log in to check access.

References

  1. Grasser E, Goswami N, Hinghofer-Szalkay H (2009) Hemodynamic and neurohormonal responses to extreme orthostatic stress in physically fit young adults. Acta Astronaut 64:688–696CrossRefGoogle Scholar
  2. Hinghofer-Szalkay H (2010) Future human spaceflight: the need for international cooperation. International Academy of Astronautics, ParisGoogle Scholar
  3. Hinghofer-Szalkay H, Lackner HK, Roessler A, Narrath B, Jantscher A, Goswami N (2011) Hormonal and plasma volume changes after presyncope. Eur J Clin Invest 41:1365–2362CrossRefGoogle Scholar

Further Reading

  1. Antunano MJ, Wade K (2014) Index of international publications in aerospace medicine, DOT/FAA/AM-14/7. Office of Aerospace Medicine, Washington, DCGoogle Scholar
  2. Barger LK, Flynn-Evans EE, Kubey A, Walsh L, Ronda JM, Wang W, Wright KP Jr, Czeisler CA (2014) Prevalence of sleep deficiency and use of hypnotic drugs in astronauts before, during, and after spaceflight: an observational study. Lancet Neurol 13:904–912CrossRefGoogle Scholar
  3. Basner M, Dinges DF (2014) Lost in space: sleep. Lancet Neurol 13(9):860–862CrossRefGoogle Scholar
  4. Basner M, Dinges DF, Mollicone DJ, Savalev I, Ecker AJ, DiAntonio A, Jones CW, Hyder EC, Kan K, Morukov BV, Sutton JP (2014) Psychological and behavioral changes during confinement in a 520-day simulated interplanetary mission to Mars. PLoS One.  https://doi.org/10.1371/journal.pone.0093298CrossRefGoogle Scholar
  5. Buckey JC, Lane LD, Levine BD, Watenpaugh DE, Wright SJ, Moore WE, Gaffney FA, Blomqvist CG (1996a) Orthostatic intolerance after spaceflight. J Appl Physiol 81(1):7–18CrossRefGoogle Scholar
  6. Buckey JC, Gaffney FA, Lane LD, Levine BD, Watenpaugh DE, Wright SJ, Yancy CW Jr, Blomqvist CG (1996b) Central venous pressure in space. J Appl Physiol 81(1):19–25CrossRefGoogle Scholar
  7. Chancellor JC, Scott GBI, Sutton JP (2014) Space radiation: the number one risk to astronaut health beyond low earth orbit. Life 4(3):491–510.  https://doi.org/10.3390/life4030491CrossRefGoogle Scholar
  8. Czeisler CA, Chiasera AJ, Duffy JF (1991) Research on sleep, circadian rhythms and aging:applications to manned spaceflight. Exp Gerontol 26:217–232CrossRefGoogle Scholar
  9. Dijk D, Neri DF, Wyatt JK, Ronda JM, Riel E, Ritz-De Cecco A, Hughes RJ, Elliott AR, Prisk GK, West JB, Czeisler CA (2001) Sleep, performance, circadian rhythms, and light-dark cycles during two space shuttle flights. Am J Physiol Regul Integr Comp Physiol 281(5):R1647–R1664. PMID: 11641138CrossRefGoogle Scholar
  10. Dinges DF (2001) Sleep in space flight. Am J Respir Crit Care Med 164(3):337CrossRefGoogle Scholar
  11. Donoviel D, Sutton JP (2013) Biomedical advances for spaceflight improve healthcare on earth. Curr Biotechnol 2(3):184. Bentham Science PublishersCrossRefGoogle Scholar
  12. Friedman DB, Williams AN, Levine BD (1997) Compliance and efficacy of cardiac rehabilitation and risk factor modification in the medically indigent. Am J Cardiol 79:281–285CrossRefGoogle Scholar
  13. Fu Q, Levine BD, Pawelczyk JA, Ertl AC, Diedrich A, Cox JF, Zuckerman JH, Ray CA, Smith ML, Iwase S, Saito M, Sugiyama Y, Mano T, Zhang R, Iwasaki K, Lane L, Buckey J, Cooke W, Robertson R, Baisch F, Blomqvist G, Eckberg DL, Robertson D, Biaggioni I (2002) Cardiovascular and sympathetic neural responses to handgrip and cold pressor stimuli in humans before, during and after spaceflight. J Physiol 544(2):653–664CrossRefGoogle Scholar
  14. Gordon NF, Scott CB, Levine BD (1997) Comparison of single versus multiple lifestyle interventions: are the antihypertensive effects of exercise training and diet-induced weight loss additive? Am J Cardiol 79(7):763–767CrossRefGoogle Scholar
  15. Gundel A, Polyakov VV, Zulley J (1997) The alteration of human sleep and circadian rhythms during spaceflight. J Sleep Res 6(1):1–8CrossRefGoogle Scholar
  16. Gunga HC (2014) Human physiology in extreme environments. Academic Press, ElsevierGoogle Scholar
  17. Harris LR, Jenkins M, Jenkineds H, Dyde R, Zachery J, Allison RS (2010) The unassisted visual system on earth and in space. J Vestib Res 20:25–30.  https://doi.org/10.3233/VES-2010-0352. IOS PressCrossRefGoogle Scholar
  18. Health Standards for Long Duration and Exploration Spaceflight: Ethics Principles, Responsibilities, and Decision Framework (April, 2014) Institute of Medicine ReportGoogle Scholar
  19. Levine BD, Stray-Gundersen J (1997) Living-high training low: effect of moderate-altitude acclimatization with low-altitude training on performance. J Appl Physiol 83(1):102–112CrossRefGoogle Scholar
  20. Levine BD, Lane LD, Watenpaugh DE, Gaffney FA, Buckey JC, Blomqvist CG (1996) Maximal exercise performance after adaptation to microgravity. J Appl Physiol 81(2):686–694CrossRefGoogle Scholar
  21. Levine BD, Zuckerman JH, Pawelczyk JA (1997a) Cardiac atrophy after bedrest deconditioning: a non-neural mechanism for orthostatic intolerance. Circulation 96(2):517–525CrossRefGoogle Scholar
  22. Levine BD, Zuckerman JH, deFilippi CR (1997b) Effect of high altitude exposure in the elderly: the tenth mountain division study. Circulation 96:1224–1232CrossRefGoogle Scholar
  23. Mallis MM, DeRoshia CW (2005) Circadian rhythms, sleep, and performance in space. Aviat Space Environ Med 76(Suppl 6):B94–B107Google Scholar
  24. Monk TH, Buysse DJ, Billy BD (2006) Using daily 30-min phase advances to achieve a 6-hour advance: circadian rhythm, sleep, and alertness. Aviat Space Environ Med 77(7):677–686. PMID: 16856351Google Scholar
  25. Mollicone DJ, Van Dongen HP, Rogers NL (2008) Response surface mapping of neurobehavioral performance: testing – the feasibility of split sleep schedules for space operations. Acta Astronaut 63:833. ElsevierCrossRefGoogle Scholar
  26. Perhonen MA, Franco F, Lane LD, Buckey JC, Blomqvist CG, Zerwekh JE, Peshock RM, Weatherall PT, Levine BD (2001) Cardiac atrophy after bed rest and spaceflight. J Appl Physiol 91:645–653CrossRefGoogle Scholar
  27. Prisk GK, West JB, Czeisler CA (2001) Sleep, performance, circadian rhythms, and light-dark cycles during two space shuttle flights. Am J Physiol 281:R1647Google Scholar
  28. Tafforin C (2013a) The Mars-500 crew in daily life activities: an ethological study. Acta Astronaut 91:69CrossRefGoogle Scholar
  29. Tafforin C (2013b) Time effects, cultural influences, and individual differences in crew behavior during the Mars-500 experiment. Aviation Space Environ Med 84:1082–1086CrossRefGoogle Scholar
  30. Whitmire A, Leveton LB, Barger L, Brainard G, Dinges DF, Klerman E, Shea C (2009) Human health and performance risks of space exploration missions: evidence reviewed by the NASA Human Research Program. NASA SP-2009-3405. Washington, DC: National Aeronautics and Space AdministrationGoogle Scholar
  31. Zhang R, Zuckerman JH, Pawelczyk JA, Levine BD (1997) Effects of head-down-tilt bed rest on cerebral hemodynamic during orthostatic stress. J Appl Physiol 83(6):2139–2145CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Medical EducationMorehouse School of MedicineAtlantaUSA

Section editors and affiliations

  • Marlene Y. MacLeish
    • 1
  1. 1.National Space Biomedical Research InstituteMorehouse School of MedicineAtlantaUSA