Encyclopedia of Computer Graphics and Games

Living Edition
| Editors: Newton Lee

Timed Automata for Video Games and Interaction

  • Jaime AriasEmail author
  • Raphaël Marczak
  • Myriam Desainte-Catherine
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-08234-9_298-1

Synonyms

Definition

Timed Automata is a formalism for modelling and verification of time-critical systems. It has been proven to be a formalism that is well adapted to the expression of the timing constraints appearing in interactive scores and video games, because it is a powerful model for describing both the logical ordering of the events in such scenario and also the duration of events and the timing between them.

Introduction

As coined by Espen Aarseth in his very first editorial launching the “game studies” journal (considered as one of the core events establishing “game studies” as an academic field), games are “both object and process [which] must be played. Playing is integral, not coincidental […]. The complex nature of simulations is such that a result cannot be predicted beforehand; it can vary greatly depending on the players luck, skill and creativity.” (Aarseth 2001). Activating a video...

This is a preview of subscription content, log in to check access.

References

  1. Aarseth, E.: Computer game studies, year one. Game Stud. 1(1), (2001). http://gamestudies.org/0101/editorial.html
  2. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994).  https://doi.org/10.1016/0304-3975(94)90010-8MathSciNetCrossRefzbMATHGoogle Scholar
  3. Arias, J., Desainte-Catherine, M., Rueda, C.: Modelling data processing for interactive scores using coloured petri nets. In: 14th International Conference on Application of Concurrency to System Design, ACSD 2014, Tunis La Marsa, Tunisia, June 23–27, 2014, pp. 186–195. IEEE Computer Society (2014).  https://doi.org/10.1109/ACSD.2014.23
  4. Arias, J., Desainte-Catherine, M., Olarte, C., Rueda, C.: Foundations for reliable and flexible interactive multimedia scores. In: Collins, T., Meredith, D., Volk, A. (eds.) Mathematics and Computation in Music – 5th International Conference, MCM 2015, London, UK, June 22–25, 2015, Proceedings, volume 9110 of Lecture Notes in Computer Science, pp. 29–41. Springer (2015a).  https://doi.org/10.1007/978-3-319-20603-5_3CrossRefGoogle Scholar
  5. Arias, J., Desainte-Catherine, M., Rueda, C.: A Framework for Composition, Verification and Real-Time Performance of Multimedia Interactive Scenarios, pp. 140–151. IEEE (2015b).  https://doi.org/10.1109/ACSD.2015.8
  6. Arias, J., Desainte-Catherine, M., Dubnov, S.: Automatic construction of interactive machine improvisation scenarios from audio recordings. In: 4th International Workshop on Musical Metacreation, MUME 2016, Paris (2016). ISBN 978-0-86491-397-5. http://musicalmetacreation.org/buddydrive/file/arias_automatic_construction/
  7. Arias, J., Celerier, J.-M., Desainte-Catherine, M.: Authoring and automatic verification of interactive multimedia scores. J. New Music Res. 46(1), 15–33 (2017).  https://doi.org/10.1080/09298215.2016.1248444CrossRefGoogle Scholar
  8. Calleja, G.: In-Game: From Immersion to Incorporation, 1st edn. The MIT Press (2011). ISBN 0262015463, 9780262015462Google Scholar
  9. Celerier, J.-M., Baltazar, P., Bossut, C., Vuaille, N., Couturier, J.-M., Desainte-Catherine, M.: OSSIA: Towards a unified interface for scoring time and interaction. In: Proceedings of the First International Conference on Technologies for Music Notation and Representation, TENOR 2015, pp. 81–90, Paris (2015). ISBN 978-2-9552905-0-7. http://tenor2015.tenor-conference.org/papers/13-Celerier-OSSIA.pdf
  10. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.): Handbook of Model Checking. Springer (2018).  https://doi.org/10.1007/978-3-319-10575-8zbMATHGoogle Scholar
  11. David, A., Larsen, K.G., Legay, A., Mikucionis, M., Poulsen, D.B.: Uppaal SMC tutorial. STTT. 17(4), 397–415 (2015).  https://doi.org/10.1007/s10009-014-0361-yCrossRefGoogle Scholar
  12. Desainte-Catherine, M., Allombert, A., Assayag, G.: Towards a hybrid temporal paradigm for musical composition and performance: The case of musical interpretation. Comput. Music. J. 37(2), 61–72 (2013).  https://doi.org/10.1162/COMJ_a_00179CrossRefGoogle Scholar
  13. Drachen, A., Canossa, A.: Towards gameplay analysis via gameplay metrics. In: Proceedings of the 13th International MindTrek Conference: Everyday Life in the Ubiquitous Era, MindTrek ’09, pp. 202–209. ACM. ISBN 978-1-60558-633-5, New York (2009).  https://doi.org/10.1145/1621841.1621878CrossRefGoogle Scholar
  14. Dulaurans, M., Marczak, R.: Quand le jeu vido devient affaire de clan: un clash royale entre incitation et inhibition. Revue Franaise des Sciences de l’Information et de la Communication. 13, (2018). https://journals.openedition.org/rfsic/3610
  15. Echeveste, J., Cont, A., Giavitto, J.-L., Jacquemard, F.: Operational semantics of a domain specific language for real time musiciancomputer interaction. Discrete Event Dyn. Syst. 23(4), 343–383 (2013).  https://doi.org/10.1007/s10626-013-0166-2CrossRefGoogle Scholar
  16. Fahrenberg, U., Larsen, K.G., Thrane, C.R.: Verification, performance analysis and controller synthesis for real-time systems. In: Fundamentals of Software Engineering, vol. 5961, pp. 34–61. Springer, Berlin/Heidelberg (2010).  https://doi.org/10.1007/978-3-642-11623-02
  17. Jacquemard, F., Poncelet, C.: An automatic test framework for interactive music systems. J. New Music Res. 45(2), 87–100 (2016).  https://doi.org/10.1080/09298215.2016.1173707CrossRefGoogle Scholar
  18. Marczak R.: Feedback-Based Gameplay Metrics and Gameplay Performance Segmentation: An audio-visual approach for assessing player experience. PhD thesis, University of Waikato, Faculty of Arts and Social Sciences, 2014Google Scholar
  19. Marczak, R., Schott, G., Hanna, P.: Postprocessing gameplay metrics for gameplay performance segmentation based on audiovisual analysis. IEEE Trans. Comput. Intell. AI Games. 7(3), 279–291 (2015).  https://doi.org/10.1109/TCIAIG.2014.2382718CrossRefGoogle Scholar
  20. Olarte, C., Rueda, C.: A declarative language for dynamic multimedia interaction systems. In: Chew, E., Childs, A., Chuan, C.-H. (eds.) Mathematics and Computation in Music, pp. 218–227. Springer, Berlin/Heidelberg (2009). ISBN 978-3-642-02394-1CrossRefGoogle Scholar
  21. Sanchez, C.P., Jacquemard, F.: Model-based testing for building reliable realtime interactive music systems. Sci. Comput. Program. 132, 143–172 (2016).  https://doi.org/10.1016/j.scico.2016.08.002CrossRefGoogle Scholar
  22. Toro, M., Desainte-Catherine, M., Rueda, C.: Formal semantics for interactive music scores: a framework to design, specify properties and execute interactive scenarios. J. Math. Music. 8(1), 93–112 (2014).  https://doi.org/10.1080/17459737.2013.870610MathSciNetCrossRefzbMATHGoogle Scholar
  23. Wang, C.-i., Dubnov, S.: The variable markov oracle: Algorithms for human gesture applications. IEEE MultiMedia. 22(4), 52–67 (2015).  https://doi.org/10.1109/MMUL.2015.76CrossRefGoogle Scholar
  24. Wang, G., Cook, P.R., Salazar, S.: Chuc K: A strongly timed computer music language. Comput. Music. J. 39(4), 10–29 (2015).  https://doi.org/10.1162/COMJa00324CrossRefGoogle Scholar
  25. Zagal, J., Mateas, M., Fernandez-Vara, C., Hochhalter, B., Lichti, N.: Towards an ontological language for game analysis. In: DiGRA ’05 – Proceedings of the 2005 DiGRA International Conference: Changing Views: Worlds in Play, Vancouver (2005). http://www.digra.org/digital-library/publications/towards-an-ontological-language-for-game-analysis/?doing_wp_cron=1531064778.6737051010131835937500
  26. Zagal, J., Fernandez-Vara, C., Mateas, M.: Rounds, levels, and waves: The early evolution of gameplay segmentation. Games Cult. 3(2), 175–198 (2008).  https://doi.org/10.1177/1555412008314129CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jaime Arias
    • 1
    Email author
  • Raphaël Marczak
    • 2
  • Myriam Desainte-Catherine
    • 2
  1. 1.Université Paris 13, Sorbonne Paris Cité, LIPN, CNRS UMR 7030VilletaneuseFrance
  2. 2.Univ. Bordeaux, Bordeaux INP, CNRS, LaBRI, UMR5800TalenceFrance