Carrier Recombination and Noise

  • Karl W. Böer
  • Udo W. PohlEmail author
Living reference work entry

Latest version View entry history



In steady state, for each act of carrier generation or excitation there must be one inverse process of recombination or relaxation. Carriers can return immediately or after scattering to their original state, or they can recombine radiatively or nonradiatively with another state.

Nonradiative recombination is almost always defect-center controlled; it releases energy in the form of phonons, or in Auger recombination, by accelerating another electron. Phonon emission occurs as a single-phonon process when trapping a carrier at a shallow defect center, or as a multiphonon emission when recombination occurs at a deep center. In carrier traps, which are located close to one band, excitation into the adjacent band and trapping at the center dominate, while in recombination centers, which are located closer to the center of the bandgap, carriers recombine from one band to the other. The capture cross-section of defect centers spread over more than 12 orders of magnitude.

Radiative recombination proceeds as an emission delayed by the lifetime of an excited state and changed in energy after relaxation of the excited state. The spectral distribution of the luminescence is related to the electronic structure of the semiconductor and its defects. The sharp low-temperature spectra of shallow-level defects in pure crystals are well understood, while the assignment of the broad emissions of deep defects with strong lattice coupling is usually difficult.

The random fluctuation of individual carrier motion and carrier generation-recombination creates noise. Equilibrium noise is caused by the Brownian motion of carriers and independent of the frequency. Nonequilibrium noise is generated upon optical excitation or current injection and has usually a typical 1/f frequency dependence. It is composed of various contributions; a fundamental part originates from energy loss by low-frequency bremsstrahlung in basically elastic scattering processes. Noise creates a lower limit for signal detection.


1/f noise Auger recombination Band-to-band recombination Bound-exciton luminescence Capture cross-section Electron-lattice coupling Equilibrium noise Extrinsic luminescence Geminate recombination Generation-recombination noise Luminescence Luminescence centers Near-band-edge emission Noise Nonequilibrium noise Nonradiative recombination Phosphors Radiative recombination Recombination Recombination centers Recombination coefficient Recombination cross-section Shockley-Read-Hall center Shot noise Spontaneous emission Stimulated emission Thermal noise Thermal radiation Trap 


  1. Agrawal GP, Dutta NK (1993) Semiconductor lasers. Springer, Kluwer Academic Publishers, BostonGoogle Scholar
  2. Ambrozy A (1982) Electronic noise. McGraw-Hill Book Co, New YorkGoogle Scholar
  3. Ascarelli G, Rodriguez S (1961) Recombination of electrons and donors in n-type germanium. Phys Rev 124:1321CrossRefADSGoogle Scholar
  4. Bakker CJ, Heller G (1939) On the Brownian motion in electric resistances. Physica 6:262CrossRefADSzbMATHGoogle Scholar
  5. Balandin A, Wang KL, Svizhenko A, Bandyopadhyay S (1999) The fundamental 1/f noise and the Hooge parameter in semiconductor quantum wires. IEEE Trans Electron Dev 46:1240CrossRefADSGoogle Scholar
  6. Barber HD (1967) Effective mass and intrinsic concentration in silicon. Solid State Electron 10:1039CrossRefADSGoogle Scholar
  7. Bartram RH, Stoneham AM (1975) On the luminescence and absence of luminescence of F centers. Sol State Commun 17:1593CrossRefADSGoogle Scholar
  8. Beattie AR, Landsberg PT (1959) Auger effect in semiconductors. Proc Roy Soc A 249:16ADSGoogle Scholar
  9. Benoit a la Guillaume C, Lavallard P (1972) Piezoemission of GaSb: impurities and bound excitons. Phys Rev B 5:4900Google Scholar
  10. Berntgen J, Heime K, Daumann W, Auer U, Tegude F-J, Matulionis A (1999) The 1/f noise of InP based 2DEG devices and its dependence on mobility. IEEE Trans Electron Dev 46:194CrossRefADSGoogle Scholar
  11. Bittel H (1959) Schwankungserscheinungen bei der Elektrizitätsleitung in Festkörpern. Erg exakt Naturwiss 31:84 (Fluctuation phenomena in the electrical conduction of solids, in German)Google Scholar
  12. Blasse G, Grabmayer BC (1994) Luminescent materials. Springer, BerlinCrossRefGoogle Scholar
  13. Böer KW, Junge K (1953) Zur Frequenzabhängigkeit von Elektronenschwankungserscheinungen in Halbleitern. Z Naturforsch 8a:753 (On the frequency dependence of electron fluctuation phenomena in semiconductors, in German)Google Scholar
  14. Bosman G (1981). PhD Thesis, University of Utrecht, NetherlandsGoogle Scholar
  15. Bube RH (1974) Electronic properties of crystalline solids. Academic Press, New YorkGoogle Scholar
  16. Bubenzer A, Hunklinger S, Dransfeld K (1980) New method for measuring extremely low optical absorptions. J Non-Cryst Sol 40:605CrossRefADSGoogle Scholar
  17. Cantow H-J et al (eds) (1981) Advances in polymer science, vol 40. Springer, BerlinGoogle Scholar
  18. Çeik-Butler Z (1996) 1/ƒ noise as an electromigration characterization tool for W-plug vias between TiN/Al-Cu/TiN metallizations. Solid State Electron 39:999CrossRefADSGoogle Scholar
  19. Chow WW, Koch SW, Sargent M (1997) Semiconductor laser physics. Springer, Berlin/New YorkGoogle Scholar
  20. Coleman JJ, Bryce C, Jagadish C (eds) (2012) Advances in semiconductor lasers. Semiconductors and semimetals, vol 86. Academic Press, San DiegoGoogle Scholar
  21. Curie D (1963) Luminescence in crystals. Wiley, New YorkGoogle Scholar
  22. Dean PJ (1984) Collective excitation in solids. Plenum Press, New YorkGoogle Scholar
  23. Dean PJ, Cuthbert JD, Lynch RT (1969) Interimpurity recombinations involving the isoelectronic trap bismuth in gallium phosphide. Phys Rev 179:754CrossRefADSGoogle Scholar
  24. Dexter DL, Klick CC, Russell GA (1956) Criterion for the occurrence of luminescence. Phys Rev 100:603CrossRefADSGoogle Scholar
  25. Dutta P, Horn PM (1981) Low-frequency fluctuations in solids: 1/f noise. Rev Mod Phys 53:497CrossRefADSGoogle Scholar
  26. Dziewior J, Schmid W (1977) Auger coefficients for highly doped and highly excited silicon. Appl Phys Lett 31:346CrossRefADSGoogle Scholar
  27. Etienne B (1975) Thesis. L’Ecole Normale Superieure, ParisGoogle Scholar
  28. Gisolf JH (1949) On the spontaneous current fluctuations in semiconductors. Physica 15:825CrossRefADSzbMATHGoogle Scholar
  29. Goldberg PG (ed) (1966) Luminescence of inorganic solids. Academic Press, New YorkGoogle Scholar
  30. González T, Mateos J, Pardo D, Bulashenko OM, Reggiani L (1998) Microscopic analysis of shot-noise suppression in nondegenerate ballistic transport. Semicond Sci Technol 13:714CrossRefADSGoogle Scholar
  31. González T, Mateos J, Pardo D, Reggiani L (1999) Joint effect of Fermi and Coulomb correlations on shot-noise suppression in ballistic conductors. Physica B 272:285CrossRefADSGoogle Scholar
  32. Grabert H, Devoret MH (eds) (1992) Single charge tunneling. Coulomb blockade in nanostructures. Plenum Press, New YorkGoogle Scholar
  33. Gruhl H, Dorn H-P, Winzer K (1985) Calorimetric absorption spectroscopy of J-aggregate dye monolayers below 0.1 Kelvin. Appl Phys B 38:199CrossRefADSGoogle Scholar
  34. Gutsche E (1982) Non-Condon approximations and the static approach in the theory of non-radiative multiphonon transitions. Phys Stat Sol B 109:583CrossRefADSGoogle Scholar
  35. Hall RN, Fenner GE, Kingsley JD, Soltys TJ, Carlson RO (1962) Coherent light emission from GaAs junctions. Phys Rev Lett 9:366CrossRefADSGoogle Scholar
  36. Handel PH (1980) Quantum approach to 1/f noise. Phys Rev A 22:745CrossRefADSGoogle Scholar
  37. Handel PH (1982) Characteristic functional of quantum 1/f noise. Phys Rev A 26:3727CrossRefADSGoogle Scholar
  38. Handel PH (1994) Fundamental quantum 1/f noise in semiconductor devices. IEEE Trans Electron Devices 41:2023CrossRefADSGoogle Scholar
  39. Handel PH (1996) Coherent and conventional quantum 1/f effect. Phys Stat Sol B 194:393CrossRefADSGoogle Scholar
  40. Haug A (1972) Theoretical solid state physics. Pergamon Press, OxfordGoogle Scholar
  41. Haug A (1980) Auger recombination with traps. Phys Stat Sol B 97:481CrossRefADSGoogle Scholar
  42. Haug A (1981) Auger recombination with deep impurities in indirect bandgap semiconductors. Phys Stat Sol B 108:443CrossRefADSGoogle Scholar
  43. Haug A (1988) Band-to-band Auger recombination in semiconductors. J Phys Chem Sol 49:599CrossRefADSGoogle Scholar
  44. Hayes W, Stoneham AM (1984) Defects and defect processes in nonmetallic solids. John Wiley, New YorkGoogle Scholar
  45. Haynes JR, Hornbeck JA (1955) Trapping of minority carriers in silicon. II. n-type silicon. Phys Rev 100:606CrossRefADSGoogle Scholar
  46. Haynes JR, Nilsson NG (1965) Recombination radiation in semiconductors. Proceedings of the 7th symposium on radiative recombination, Paris 1964. Dunod, Paris, pp 21–31Google Scholar
  47. Heitz R, Podlowski L, Böhrer J, Hoffmann A, Broser I, Bimberg D (1995) Calorimetric absorption spectroscopy of deep defects and quantum dots. Acta Physica Polonica A 88:619CrossRefGoogle Scholar
  48. Hensel JC, Phillips TG, Thomas GA (1978) The electron–hole liquid in semiconductors: experimental aspects. In: Ehrenreich H, Seitz F, Turnbull D (eds) Solid State Phys 32. Academic Press, New York, pp 87–314Google Scholar
  49. Henry CH, Lang DV (1977) Nonradiative capture and recombination by multiphonon emission in GaAs and GaP. Phys Rev B 15:989CrossRefADSGoogle Scholar
  50. Hooge FN (1969) 1/f noise is no surface effect. Phys Lett A 29:139CrossRefADSGoogle Scholar
  51. Hooge FN, Kleinpenning TGM, Vandamme LKJ (1981) Experimental studies on 1/f noise. Rep Prog Phys 44:479CrossRefADSGoogle Scholar
  52. Iveland J, Martinelli L, Peretti J, Speck JS, Weisbuch C (2013) Direct measurement of Auger electrons emitted from a semiconductor light-emitting diode under electrical injection: Identification of the dominant mechanism for efficiency droop. Phys Rev Lett 110:177406CrossRefADSGoogle Scholar
  53. Johnson JB (1925) The Schottky effect in low frequency circuits. Phys Rev 26:71CrossRefADSGoogle Scholar
  54. Juhl A, Bimberg D (1988) Calorimetric absorption and transmission spectroscopy for determination of quantum efficiencies and characterization of ultrathin layers and non radiative centers. J Appl Phys 64:303CrossRefADSGoogle Scholar
  55. Kalt H (1994) The electron–hole plasma and liquid in confined semiconductor systems. J Lumin 60:262CrossRefGoogle Scholar
  56. Kapon E (1999) Semiconductor lasers, fundamentals. Academic Press, San DiegoGoogle Scholar
  57. Kayanuma Y, Fukuchi S (1984) Nonradiative transitions in deep impurities in semiconductors – study in a semiclassical model. J Phys Soc Jpn 53:1869CrossRefADSGoogle Scholar
  58. Kilmer J, Chenette EK, van Vliet CM, Handel PH (1982) Absence of temperature fluctuations in 1/f noise correlation experiments in silicon. Phys Stat Sol A 70:287CrossRefADSGoogle Scholar
  59. Knox RS (1963) Theory of excitons. Solid State Phys Suppl 5. Academic Press, New YorkGoogle Scholar
  60. Kogan SM (1996) Electronic noise and fluctuations in solids. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  61. Korotov AN (1994) Intrinsic noise of the single-electron transistor. Phys Rev B 49:10381CrossRefADSGoogle Scholar
  62. Kousik GS, van Vliet CM, Bosman G, Handel PH (1985) Quantum 1/f noise associated with ionized impurity scattering and electron-phonon scattering in condensed matter. Adv Phys 34:663CrossRefADSGoogle Scholar
  63. Kousik GS, van Vliet CM, Bosman G, Luo H-J (1989) Quantum 1/f noise associated with intervalley scattering in nondegenerate semiconductors. I. Analytical calculations. Phys Stat Sol B 154:713CrossRefADSGoogle Scholar
  64. Laks DB, Neumark GF, Hangleiter A, Pantelides ST (1988) Theory of interband Auger recombination in n-type silicon. Phys Rev Lett 61:1229CrossRefADSGoogle Scholar
  65. Lampert MA (1958) Mobile and immobile effective-mass-particle complexes in nonmetallic solids. Phys Rev Lett 1:450CrossRefADSGoogle Scholar
  66. Landsberg PT (1987) The band-band Auger effect in semiconductors. Solid State Electron 30:1107CrossRefADSGoogle Scholar
  67. Landsberg PT, Pimpale A (1976) Recombination-induced non-equilibrium phase transitions in semiconductors. J Phys C 9:1243CrossRefADSGoogle Scholar
  68. Landsberg PT, Willoughby AF (eds) (1978) Recombination in semiconductors. Solid State Electron 21Google Scholar
  69. Levitov LS, Lesovik GB (1993) Charge distribution in quantum shot noise. JETP Lett 58:230ADSGoogle Scholar
  70. Li YP, Tsui DC, Heremans JJ, Simmons JA, Weimann GW (1990) Low-frequency noise in transport through quantum point contacts. Appl Phys Lett 57:774CrossRefADSGoogle Scholar
  71. Liefrink F, Scholten AJ, Dekker C, Eppenga R, van Houten H, Foxon CT (1991) Low-frequency noise of quantum point contacts in the ballistic and quantum Hall regime. Physica B 175:213CrossRefADSGoogle Scholar
  72. Lochmann W, Haug A (1980) Phonon-assisted Auger recombination in Si with direct calculation of the overlap integrals. Sol State Commun 35:553CrossRefADSGoogle Scholar
  73. Maiman TH (1960) Optical and microwave-optical experiments in ruby. Phys Rev Lett 4:564CrossRefADSGoogle Scholar
  74. Malvezzi AM (1987) Interaction of picosecond laser pulses with solid surfaces. Proc SPIE 793:49CrossRefADSGoogle Scholar
  75. McWorther AL (1955) 1/f noise and related surface effects in germanium. Lincoln lab report No 80, BostonGoogle Scholar
  76. Mott NF (1974) Metal-insulator transitions. Barnes and Noble, New YorkGoogle Scholar
  77. Nakamura A, Weisbuch C (1978) Resonant Raman scattering versus hot electron effects in excitation spectra of CdTe. Solid State Electron 21:1331CrossRefADSGoogle Scholar
  78. Nathan MI, Dumke WP, Burns G, Dill FH Jr, Lasher G (1962) Stimulated emission of radiation from GaAs p-n junctions. Appl Phys Lett 1:62CrossRefADSGoogle Scholar
  79. Nicolet MA, Bilger HR, Zijlstra RJJ (1975) Noise in single and double injection currents in solids (I). Phys Stat Sol B 70:9. And: Noise in single and double injection currents in solids (II). Phys Stat Sol B 70:415Google Scholar
  80. Nyquist H (1928) Thermal agitation of electric charge in conductors. Phys Rev 32:110CrossRefADSGoogle Scholar
  81. Pellegrini B (1986) On mobility-fluctuation origin of 1/ƒ noise. Solid State Electron 29:1279CrossRefADSGoogle Scholar
  82. Peuker K, Enderlein R, Schenk A, Gutsche E (1982) Theory of non-radiative multiphonon capture processes. Solution of old controversies. Phys Stat Sol B 109:599CrossRefADSGoogle Scholar
  83. Quist TM, Rediker RH, Keyes RJ, Krag WE, Lax B, McWhorter AL, Zeigler HJ (1962) Semiconductor maser of GaAs. Appl Phys Lett 1:91CrossRefADSGoogle Scholar
  84. Reinecke TL (1982) Electron–hole liquid condensation in semiconductors. In: Devreese JT, Peeters F (eds) Polarons and excitons in polar semiconductors and ionic crystals. Plenum Press, New York, pp 343–382Google Scholar
  85. Rice TM (1977) The electron–hole liquid in semiconductors: theoretical aspects. In: Ehrenreich H, Seitz F, Turnbull D (eds) Solid State Phys 32. Academic Press, New York, pp 1–86Google Scholar
  86. Reynolds DC (1960) Temperature dependence of edge emission in cadmium sulfide. Phys Rev 118:478CrossRefADSGoogle Scholar
  87. Reynolds DC, Bajaj KK, Litton CW (1985) Study of shallow impurity states in compound semiconductors using high resolution photoluminescence spectroscopy. Solid State Commun 53:1061CrossRefADSGoogle Scholar
  88. Reznikov M, de Picciotto R, Heiblum M, Glattli DC, Kumar A, Saminadayar L (1998) Quantum shot noise. Superlattices Microstruct 23:901CrossRefADSGoogle Scholar
  89. Robbins DJ, Landsberg PT (1980) Impact ionisation and Auger recombination involving traps in semiconductors. J Phys C 13:2425CrossRefADSGoogle Scholar
  90. Ronda C (2008) Luminescence. Wiley-VCH, WeinheimGoogle Scholar
  91. Rose A (1951) Concepts in photoconductivity and allied problems. RCA Rev 12:362Google Scholar
  92. Rostworowski JA, Bergersen B (1978) Phonon replicas of the electron-hole liquid luminescence in intrinsic silicon. Solid State Commun 28:919CrossRefADSGoogle Scholar
  93. Schottky W (1918) Über spontane Stromschwankungen in verschiedenen Elektrizitätsleitern. Ann Phys (Lpz) 57:541 (Regarding spontaneous current fluctuation in different electricity conductors, in German)Google Scholar
  94. Shah J (1974) Distribution function of photoexcited carriers in highly excited GaAs. Phys Rev B 10:3697CrossRefADSGoogle Scholar
  95. Shah J (1978) Hot electrons and phonons under high intensity photoexcitation of semiconductors. Solid State Electron 21:43CrossRefADSGoogle Scholar
  96. Shah J, Leite RCC (1969) Radiative recombination from photoexcited hot carriers in GaAs. Phys Rev Lett 22:1304CrossRefADSGoogle Scholar
  97. Shah J, Combescot M, Dayem AH (1977) Investigation of exciton-plasma Mott transition in Si. Phys Rev Lett 38:1497CrossRefADSGoogle Scholar
  98. Sherif TS, Handel PH (1982) Unified treatment of diffraction and 1/f noise. Phys Rev A 26:596CrossRefADSGoogle Scholar
  99. Shionoya S (1991) A review of wide bandgap II-VI compounds. Mater Forum 15:132Google Scholar
  100. Shockley W, Read WT Jr (1952) Statistics of the recombinations of holes and electrons. Phys Rev 87:835CrossRefADSzbMATHGoogle Scholar
  101. Stierwalt DL, Potter RF (1967) Emittance studies. In: Willardson RK, Beer AC (eds) Semiconductors and semimetals, vol 3. Academic Press, pp 71–90Google Scholar
  102. Sumi H (1983) Nonradiative multiphonon capture of free carriers by deep-level defects in semiconductors: adiabatic and nonadiabatic limits. Phys Rev B 27:2374CrossRefADSGoogle Scholar
  103. Tacano M (1993) Hooge fluctuation parameter of semiconductor microstructures. IEEE Trans Electron Devices 40:2060CrossRefADSGoogle Scholar
  104. Thomas DG, Hopfield JJ, Frosch CJ (1965) Isoelectronic traps due to nitrogen in gallium phosphide. Phys Rev Lett 15:857CrossRefADSGoogle Scholar
  105. Trumbore FA, Gershenzon M, Thomas DG (1966) Luminescence due to the isoelectronic substitution of bismuth for phosphorus in gallium phosphide. Appl Phys Lett 9:4CrossRefADSGoogle Scholar
  106. Ulmer EA, Frankl DR (1968) Infrared emission from free carriers in germanium. Proceedings of the 9th international conference on the physics of semiconductors. Nauka, Moscow, pp 170–174Google Scholar
  107. van der Ziel A (1950) On the noise spectra of semi-conductor noise and of flicker effect. Physica 16:359CrossRefADSGoogle Scholar
  108. van der Ziel A (1970) Noise: Sources, characterization, measurement. Prentice Hall Inc, Englewood CliffsGoogle Scholar
  109. van der Ziel A (1986) Noise in solid state devices and circuits. John Wiley & Sons, New YorkGoogle Scholar
  110. van der Ziel A (1988) Unified presentation of 1/f noise in electron devices: fundamental 1/f noise sources. Proc IEEE 76:233CrossRefGoogle Scholar
  111. van der Ziel A, Handel PM (1985) 1/f noise in n+-p diodes. IEEE Trans Electron Devices ED-32:1802CrossRefADSGoogle Scholar
  112. van Kampen NG (1992) Stochastic processes in physics and chemistry. North Holland Publishing, AmsterdamzbMATHGoogle Scholar
  113. van Roosbroeck W, Shockley W (1954) Photon-radiative recombination of electrons and holes in germanium. Phys Rev 94:1558CrossRefADSGoogle Scholar
  114. van Vliet KM (1958) Irreversible thermodynamics and carrier density fluctuations in semiconductors. Phys Rev 110:50CrossRefADSMathSciNetzbMATHGoogle Scholar
  115. van Vliet KM (1990) Quantum electrodynamical theory of infrared effects in condensed matter: II. Radiative corrections of cross sections and scattering rates and quantum 1/f noise. Physica A 165:126CrossRefADSGoogle Scholar
  116. van Vliet KM, Mehta H (1981) Theory of transport noise in semiconductors. Phys Stat Sol B 106:11CrossRefADSGoogle Scholar
  117. van Vliet KM, van der Ziel A (1958) On the noise generated by diffusion mechanisms. Physica 24:415CrossRefADSzbMATHGoogle Scholar
  118. Voos M, Leheny RF, Shah J (1980) Radiative recombination. In: Moss TS, Balkanski M (eds) Handbook on semiconductors, Optical properties of solids, vol 2. North Holland Publishing Company, Amsterdam, pp 329–416Google Scholar
  119. Voss RF, Clarke J (1976) Flicker (1/f) noise: equilibrium temperature and resistance fluctuations. Phys Rev B 13:556CrossRefADSGoogle Scholar
  120. Varshni YP (1967) Band-to-band radiative recombination in groups IV, VI, and III-V semiconductors (I). Phys Stat Sol B 19:459; (II) Phys Stat Sol B 20:9Google Scholar
  121. Wagner J (1985) Heavily doped silicon studied by luminescence and selective absorption. Solid State Electron 28:25CrossRefADSGoogle Scholar
  122. Weisbuch C, Ulbrich RG (1978) Resonant interactions of LA-phonons with excitonic polaritons in GaAs. In: Balkanski M (ed) Proceedings of the international conference on lattice dynamics. Flammarion Sciences, Paris, pp 167–169Google Scholar
  123. William EW, Hall R (1978) Luminescence and the light emitting diode. Pergamon Press, New YorkGoogle Scholar
  124. Yariv A (1975) Quantum electronics, 2nd edn. John Wiley & Sons, New YorkGoogle Scholar

Copyright information

© Springer International Publishing AG 2020

Authors and Affiliations

  1. 1.NaplesUSA
  2. 2.Institut für Festkörperphysik, EW5-1Technische Universität BerlinBerlinGermany

Personalised recommendations