Advertisement

The Structure of Semiconductors

  • Karl W. Böer
  • Udo W. PohlEmail author
Living reference work entry

Latest version View entry history

  • 4 Downloads

Abstract

The bonding forces and atomic sizes determine the arrangement of the atoms in equilibrium in crystals. The crystal structure is determined by the tendency to fill a given space with the maximum number of atoms under the constraint of bonding forces and atomic radii. Crystal bonding and crystal structure are thus intimately related to each other and determine the intrinsic properties of semiconductors. Nonequilibrium states can be frozen-in and determine the structure of amorphous semiconductors. In an amorphous structure the short-range order is much like that in a crystal, while long-range periodicity does not exist. Quasicrystals are solids with an order between crystalline and amorphous. These quasiperiodic crystals have no three-dimensional translational periodicity, but exhibit long-range order in a diffraction experiment. A quasicrystalline pattern continuously fills all available space; unlike regular crystals space filling requires an aperiodic repetition of (at least) two different unit cells.

Superlattices and low-dimensional structures like quantum wires and quantum dots, created by alternating thin depositions of different semiconductors, show material properties which can be engineered by designing size and chemical composition. This opens the feasibility for fabricating new and improved devices.

Keywords

Bonding forces Bravais lattice Brillouin zone Crystal structure Atomic radii Crystal bonding Miller indices Organic semiconductors Structure of amorphous semiconductors Short-range order Quasicrystals Superlattices Quantum wells Quantum wires Quantum dots Reciprocal lattice Unit cell 

References

  1. Abrikosov NK, Bankina VF, Poretskaya LV, Shelimova LE, Skudnova EV (1969) Semiconducting II-VI, IV-VI, and V-VI compounds. Plenum Press, New YorkCrossRefGoogle Scholar
  2. Adler D (1985) Chemistry and physics of covalent amorphous semiconductors. In: Adler D, Schwartz BB, Steele MC (eds) Physical properties of amorphous materials. Plenum Press, New York, p 5–103.CrossRefGoogle Scholar
  3. Agarwal VK (1988) Langmuir-Blodgett films. Phys Today 41:40CrossRefGoogle Scholar
  4. Allan DC, Joannopoulos JD, Pollard WB (1982) Electronic states and total energies in hydrogenated amorphous silicon. Phys Rev B 25:1065CrossRefADSGoogle Scholar
  5. Ambrosch-Draxl C, Nabok D, Puschnig P, Meisenbichler C (2009) The role of polymorphism in organic thin films: oligoacenes investigated from first principles. New J Phys 11:125010CrossRefGoogle Scholar
  6. Ames Laboratory and Department of Physics and Astronomy, Iowa State University, Ames (2010) Image accessible at http://cmp.physics.iastate.edu/canfield/img/cbquasi1.jpg
  7. Arushanov EK (1986) Crystal growth, characterization and application of II V compounds. Prog Cryst Growth Charact 13:1CrossRefGoogle Scholar
  8. Bacewicz R, Ciszek TF (1988) Preparation and characterization of some AIBIICV type semiconductors. Appl Phys Lett 52:1150CrossRefADSGoogle Scholar
  9. Barrett CS, Massalski TB (1980) Structure of metals, 3rd revised edn. Pergamon Press, Oxford/New YorkGoogle Scholar
  10. Bastard G, Brum JA (1986) Electronic states in semiconductor heterostructures. IEEE J Quantum Electron QE 22:1625CrossRefADSGoogle Scholar
  11. Belin-Ferré E (2004) Electronic structure of quasicrystalline compounds. J Non-Cryst Sol 334&335:323CrossRefGoogle Scholar
  12. Bell RJ, Dean P (1972) The structure of vitreous silica: validity of the random network theory. Philos Mag 25:1381CrossRefADSGoogle Scholar
  13. Bendersky L (1985) Quasicrystal with one-dimensional translational symmetry and a tenfold rotation axis. Phys Rev Lett 55:1461CrossRefADSGoogle Scholar
  14. Bernard JE, Zunger A (1988) Ordered-vacancy-compound semiconductors: pseudocubic CdIn2Se4. Phys Rev B 37:6835CrossRefADSGoogle Scholar
  15. Bertrand L, Cotte M, Stampanoni M, Thoury M, Marone F, Schöder S (2012) Development and trends in synchrotron studies of ancient and historical materials. Phys Rep 512:51CrossRefADSGoogle Scholar
  16. Besson JM, Mokhtari EH, Gonzalez J, Weill G (1987) Electrical properties of semimetallic silicon III and semiconductive silicon IV at ambient pressure. Phys Rev Lett 59:473CrossRefADSGoogle Scholar
  17. Bethe HA (1935) Statistical theory of superlattices. Proc Roy Soc A 150:552ADSzbMATHGoogle Scholar
  18. Bhat R, Kapon E, Hwang DM, Koza MA, Yun CP (1988) Patterned quantum well heterostructures grown by OMCVD on non-planar substrates: applications to extremely narrow SQW lasers. J Cryst Growth 93:850CrossRefADSGoogle Scholar
  19. Bienenstock A (1985) Structural studies of amorphous materials. In: Adler D, Schwartz BB, Steele MC (eds) Physical properties of amorphous materials. Plenum Press, New York, pp 171–200.CrossRefGoogle Scholar
  20. Bimberg D, Grundmann M, Ledentsov NN (1999) Quantum dot heterostructures. Wiley, ChichesterGoogle Scholar
  21. Bindi L, Steinhardt PJ, Yao N, Lu PJ (2011) Icosahedrite, Al63Cu24Fe13, the first natural quasicrystal. Am Mineral 96:928CrossRefADSGoogle Scholar
  22. Birss RR (1964) Symmetry and magnetism. North Holland, AmsterdamzbMATHGoogle Scholar
  23. Blodgett KB (1935) Films built by depositing successive monomolecular layers on a solid surface. J Am Chem Soc 57:1007CrossRefGoogle Scholar
  24. Boolchand P (1985) Mössbauer spectroscopy—a rewarding probe of morphological structure of semiconducting glasses. In: Adler D, Schwartz BB, Steele MC (eds) Physical properties of amorphous materials. Plenum Press, New York, pp 221–260.CrossRefGoogle Scholar
  25. Brown PJ, Forsyth JB (1973) The crystal structure of solids. Edwald Arnold, LondonGoogle Scholar
  26. Buerger MJ (1956) Elementary crystallography: an introduction to the fundamental geometrical features of crystals. Wiley, New YorkzbMATHGoogle Scholar
  27. Cahn JW, Shechtman D, Gratias D (1986) Indexing of icosahedral quasiperiodic crystals. J Mater Res 1:13CrossRefADSGoogle Scholar
  28. Carlson AE, Zunger A, Wood DM (1985) Electronic structure of LiZnN: interstitial insertion rule. Phys Rev B 32:1386CrossRefADSGoogle Scholar
  29. Chen X, Lenhert S, Hirtz M, Nan L, Fuchs H, Lifeng C (2007) Langmuir–Blodgett patterning: a bottom–up way to build mesostructures over large areas. Acc Chem Res 40:393CrossRefGoogle Scholar
  30. Choi HJ (2012) Vapor–liquid–solid growth of semiconductor nanowires. In: Yi G-C (ed) Semiconductor nanostructures for optoelectronic devices. Springer, BerlinGoogle Scholar
  31. Costantini G, Rastelli A, Manzano C, Acosta-Diaz P, Songmuang R, Katsaros G, Schmidt OG, Kern K (2006) Interplay between thermodynamics and kinetics in the capping of InAs/GaAs(001) quantum dots. Phys Rev Lett 96:226106CrossRefADSGoogle Scholar
  32. Dandrea RG, Zunger A (1991) First-principles study of intervalley mixing: Ultrathin GaAs/GaP superlattices. Phys Rev B 43:8962CrossRefADSGoogle Scholar
  33. DiBenedetto AT (1967) The structure and properties of materials. McGraw-Hill, New YorkGoogle Scholar
  34. Dubois JM, Brunet P, Belin-Ferré E (2000) Potential applications of quasicrystalline materials. In: Belin-Ferré E et al. (eds) Quasicrystals: current topics. World Scientific, Singapore, p 498.CrossRefGoogle Scholar
  35. Dubois J-M (2005) Useful quasicrystals. World Scientific, SingaporeGoogle Scholar
  36. Dubois J-M (2012) Properties and applications of quasicrystals and complex metallic alloys. Chem Soc Rev 41:6760CrossRefGoogle Scholar
  37. Ehrenreich H (1987) Electronic theory for materials science. Science 235:1029CrossRefADSGoogle Scholar
  38. Emery N, Hérold C, Marêché J-F, Lagrange P (2008) Synthesis and superconducting properties of CaC6. Sci Technol Adv Mater 9:044102CrossRefGoogle Scholar
  39. Etherington G, Wright AC, Wenzel JT, Dore JC, Clarke JH, Sinclair RN (1982) A neutron diffraction study of the structure of evaporated amorphous germanium. J Non-Cryst Sol 48:265CrossRefADSGoogle Scholar
  40. Freysoldt C, Pfanner G, Neugebauer J (2012) The dangling-bond defect in amorphous silicon: statistical random versus kinetically driven defect geometries. J Non-Cryst Sol 358:2063CrossRefADSGoogle Scholar
  41. Fritzsche H (2001) Development in understanding and controlling the Staebler-Wronski effect in a-Si:H. Annu Rev Mater Res 31:47CrossRefADSGoogle Scholar
  42. Galli G, Martin RM, Car R, Parrinello M (1988) Structural and electronic properties of amorphous carbon. Phys Rev Lett 62:555Google Scholar
  43. Gomyo A, Suzuki T, Kobayashi K, Kawata S, Hino I, Yuasa T (1987) Evidence for the existence of an ordered state in Ga0.5In0.5P grown by metalorganic vapor phase epitaxy and its relation to band-gap energy. Appl Phys Lett 50:673CrossRefADSGoogle Scholar
  44. Goncharova I (2012) University of Western Ontario. http://www.physics.uwo.ca/~lgonchar/artwork/photos/IonChanneling.jpg
  45. Gossard AC (1986) Growth of microstructures by molecular beam epitaxy. IEEE J Quantum Electron QE 22:1649CrossRefADSGoogle Scholar
  46. Gustafsson A, Reinhardt F, Biasiol G, Kapon E (1995) Low-pressure organometallic chemical vapor deposition of quantum wires on V-grooved substrates. Appl Phys Lett 67:3673CrossRefADSGoogle Scholar
  47. Hahn T (ed) (1983) International tables for crystallography vol. A. D. Reidel Publication, DordrechtzbMATHGoogle Scholar
  48. Hanrath T (2012) Colloidal nanocrystal quantum dot assemblies as artificial solids. J Vac Sci Technol A 30:030802Google Scholar
  49. Häussler P, Nowak H, Haberkern R (2000) From the disordered via the quasicrystalline to the crystalline state. Mater Sci Eng 294–296:283CrossRefGoogle Scholar
  50. Hayes TM, Boyce JC (1985) Extended X-ray absorption fine structure spectroscopy. Solid State Phys 37:173CrossRefGoogle Scholar
  51. Hermann C (1949) Kristallographie in Räumen beliebiger Dimensionszahl. 1. Die Symmetrieoperationen. Acta Crystallogr 2:139 (Crystallography in spaces of arbitrary dimension. 1. The symmetry operation, in German)CrossRefGoogle Scholar
  52. Isu T, Jiang D-S, Ploog K (1987) Ultrathin-layer (AlAs)m (GaAs)m superlattices with m = 1,2,3 grown by molecular beam epitaxy. Appl Phys A 43:75CrossRefADSGoogle Scholar
  53. Jäckle J (1986) Models of the glass transition. Rep Prog Phys 49:171CrossRefADSGoogle Scholar
  54. Jaffe JE, Zunger A (1984) Electronic structure of the ternary pnictide semiconductors ZnSiP2, ZnGeP2, ZnSnP2, ZnSiAs2, and MgSiP2. Phys Rev B 30:741CrossRefADSGoogle Scholar
  55. James RW (1954) The optical principles of the diffraction of X-Rays. G. Bell & Sons, LondonGoogle Scholar
  56. Janot C (1994) Quasicrystals: a primer, 2nd edn. Oxford University Press, Oxford, UK, Reissued 2012Google Scholar
  57. Jarolimek K, de Groot RA, de Wijs GA, Zeman M (2009) First-principles study of hydrogenated amorphous silicon. Phys Rev B 79:155206CrossRefADSGoogle Scholar
  58. Jen HR, Cherng MJ, Stringfellow GB (1986) Ordered structures in GaAs0.5Sb0.5 alloys grown by organometallic vapor phase epitaxy. Appl Phys Lett 48:1603CrossRefADSGoogle Scholar
  59. Jurchescu OD, Baas J, Palstra TTM (2004) Effect of impurities on the mobility of single crystal pentacene. Appl Phys Lett 84:3061CrossRefADSGoogle Scholar
  60. Kalarasse F, Bennecer B (2006) Optical properties of the filled tetrahedral semiconductors LiZnX (X = N, P, and As). J Phys Chem Sol 67:1850CrossRefADSGoogle Scholar
  61. Kitaigorodskii AI (1973) Molecular crystals and molecules. Academic Press, New YorkGoogle Scholar
  62. Kittel C (2007) Introduction to solid state physics, 7th edn. Wiley, New YorkzbMATHGoogle Scholar
  63. Klug HP, Alexander LE (1974) X-ray diffraction procedures for polycrystalline and amorphous materials, 2nd edn. Wiley, New YorkGoogle Scholar
  64. Kuan TS, Kuech TF, Wang WI, Wilkie EL (1985) Long-range order in AlxGa1-xAs. Phys Rev Lett 54:201CrossRefADSGoogle Scholar
  65. Kuan TS, Wang WI, Wilkie EL (1987) Long-range order in AlxGa1-xAs. Appl Phys Lett 51:51CrossRefADSGoogle Scholar
  66. Kuriyama K, Nakamura F (1987) Electrical transport properties and crystal structure of LiZnAs. Phys Rev B 36:4439CrossRefADSGoogle Scholar
  67. Landoldt-Börnstein (1982) New series, III. 17a and b. Madelung O, Schulz M, Weiss H (eds) Springer, BerlinGoogle Scholar
  68. Landoldt-Börnstein (1987) New series, III, 22. Madelung O, Schulz M (eds) Springer, BerlinGoogle Scholar
  69. Langmuir I (1920) The mechanism of the surface phenomena of flotation. Trans Faraday Soc 15:62CrossRefGoogle Scholar
  70. Levine D, Steinhardt PJ (1984) Quasicrystals: a new class of ordered structures. Phys Rev Lett 53:2477CrossRefADSGoogle Scholar
  71. Li JJ, Wang A, Ghuo W, Keay JC, Mishima TD, Johnson MB, Peng X (2003) Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction. J Am Chem Soc 125:12567CrossRefGoogle Scholar
  72. Maciá E (2006) The role of aperiodic order in science and technology. Rep Prog Phys 69:397CrossRefADSGoogle Scholar
  73. Mandelbrot BB (1981) The fractal geometry of nature. Freeman, San FranciscoGoogle Scholar
  74. Márquez J, Geelhaar L, Jacobi K (2001) Atomically resolved structure of InAs quantum dots. Appl Phys Lett 78:2309CrossRefADSGoogle Scholar
  75. Mayou D, Berger C, Cyrot-Lackmann F, Klein T, Lanco P (1993) Evidence for unconventional electronic transport in quasicrystals. Phys Rev Lett 70:3915CrossRefADSGoogle Scholar
  76. Menelle A, Bellissent R (1986) EXAFS and neutron scattering determination of local order in a-Si:H. In: Engström O (ed) Proceedings of international conference on the physics of semiconductors. World Scientific, Stockholm, p 1049–1052Google Scholar
  77. Miller A, MacKinnon A, Weaire D (1981) Beyond the binaries – the chalcopyrite and related semiconducting compounds. In: Ehrenreich H, Seitz F, Turnbull D (eds) Solid state physics, vol 36. Academic Press, New YorkGoogle Scholar
  78. Moss SC, Graczyk JF (1970) Structure of amorphous silicon. In: Proceedings of 10th international conference on semiconductors, Washington DC, pp 658–662Google Scholar
  79. Mott NF, Davis EA (1979) Electronic processes in non-crystalline materials, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  80. MPI Halle (2007): Max Planck Institute of Microstructure Physics, Halle, Germany. The image is accessible at http://www.mpi-halle.mpg.de/department2/research-areas/nanowires-nanoobjects/semiconductor-nanowires/abstract/si-nanowires-by-cvd-and-ebe/
  81. Murray C, Kagan C, Bawendi M (2000) Synthesis and characterization of monodisperse nanocrystals and closed-packed nanocrystal assemblies. Ann Rev Mater Sci 30:545CrossRefADSGoogle Scholar
  82. Nakayama H, Fujita H (1985) Direct observation of an ordered phase in a disordered In1-xGaxAs alloy. In: Fujimoto M (ed) Gallium arsenide and related compounds 1985. Institute of physics conference series, vol 79. IOP, Adam Hilger, Boston, pp 289–294Google Scholar
  83. Newnham RE (1975) Structure–property relations. Springer, BerlinCrossRefGoogle Scholar
  84. Ovshinsky SR (1976) Lone-pair relationships and the origin of excited states in amorphous chalcogenides. AIP Conf Proc 31:31CrossRefADSGoogle Scholar
  85. Pantelides ST (1987) Defect dynamics and the Staebler-Wronski effect in hydrogenated amorphous silicon. Phys Rev B 36:3479CrossRefADSGoogle Scholar
  86. Parthé E (1964) Crystal chemistry of tetrahedral structures. Gordon & Breach, New YorkGoogle Scholar
  87. Parthé E (1972) Cristallochimie des structures tétraédriques. Gordon & Breach, New YorkGoogle Scholar
  88. Pay Gómez C, Lidin S (2001) Structure of Ca13Cd76: A novel approximant to the MCd5.7 quasicrystals (M = Ca, Yb). Angewandte Chemie 40:4037CrossRefGoogle Scholar
  89. Penrose R (1974) Role of aesthetics in pure and applied research. Bull Inst Math Appl 10:266Google Scholar
  90. Petroff PM, Gossard AC, Wiegmann W, Savage A (1978) Crystal growth kinetics in (GaAs)n − (AlAs)m superlattices deposited by molecular beam epitaxy: I. Growth on singular (100)GaAs substrates. J Cryst Growth 44:5Google Scholar
  91. Petroff PM, Gossard AC, Savage A, Wiegmann W (1979) Molecular beam epitaxy of Ge and Ga1−xAlxAs ultra thin film superlattices. J Cryst Growth 46:172CrossRefADSGoogle Scholar
  92. Phillips JC (1980) Morphology of amorphous semiconductors. Comments Solid State Phys 9:191Google Scholar
  93. Pinczolits M, Springholz G, Bauer G (1998) Direct formation of self-assembled quantum dots under tensile strain by heteroepitaxy of PbSe on PbTe (111). Appl Phys Lett 73:250CrossRefADSGoogle Scholar
  94. Polk DE (1971) Structural model for amorphous silicon and germanium. J Non-Cryst Sol 5:365CrossRefADSGoogle Scholar
  95. Rastelli A, Kummer M, von Känel H (2001) Reversible shape evolution of Ge islands on Si(001). Phys Rev Lett 87:256101CrossRefADSGoogle Scholar
  96. Richardson TH (ed) (2000) Functional organic and polymeric materials. Wiley, New YorkGoogle Scholar
  97. Roberts GG (1985) An applied science perspective of Langmuir-Blodgett films. Adv Phys 34:475CrossRefADSGoogle Scholar
  98. Runnels LK (1967) Phase transition of a Bethe lattice gas of hard molecules. J Math Phys 8:2081CrossRefADSGoogle Scholar
  99. Shay L, Wernick JH (1974) Ternary chalcopyrite semiconductors: growth, electronic properties, and applications. Pergamon Press, OxfordGoogle Scholar
  100. Shechtman D, Blech I, Gratias D, Cahn JW (1984) Metallic phase with long-range orientational order and no translational symmetry. Phys Rev Lett 53:1951CrossRefADSGoogle Scholar
  101. Singh J, Shimakawa K (2003) Advances in amorphous semiconductors. Taylor and Francis, LondonCrossRefGoogle Scholar
  102. Sommer AH (1968) Photoemissive materials: preparation, properties, and uses. Wiley, New YorkGoogle Scholar
  103. Srivastava GP, Martins JL, Zunger A (1985) Atomic structure and ordering in semiconductor alloys. Phys Rev B 31:2561CrossRefADSGoogle Scholar
  104. Steinhardt P, Alben R, Weaire D (1974) Relaxed continuous random network models: (I). Structural characteristics. J Non-Cryst Sol 15:199CrossRefADSGoogle Scholar
  105. Steinhardt PJ (1987) Icosahedral solids: a new phase of matter? Science 238:1242CrossRefADSGoogle Scholar
  106. Stern EA (1978) Structure determination by X-ray absorption. Contemp Phys 19:289CrossRefADSGoogle Scholar
  107. Stern EA (1985) EXAFS of disordered systems. In: Adler D, Schwartz BB, Steele MC (eds) Physical properties of amorphous materials. Plenum Press, New York p 201–219CrossRefGoogle Scholar
  108. Street RA (1991) Hydrogenated amorphous silicon. Cambridge University Press, Cambridge, UKCrossRefGoogle Scholar
  109. Suck J-B, Schreiber M, Häussler P (eds) (2002) Quasicrystals: an introduction to structure, physical properties and applications. Springer, BerlinGoogle Scholar
  110. Takeya J, Yamagishi M, Tominari Y, Hirahara R, Nakazawa Y, Nishikawa T, Kawase T, Shimoda T, Ogawa S (2007) Very high-mobility organic single-crystal transistors with in-crystal conduction channels. Appl Phys Lett 90:102120CrossRefADSGoogle Scholar
  111. Temkin RJ, Paul W, Connell GAN (1973) Amorphous germanium II. Structural properties. Adv Phys 22:581CrossRefADSGoogle Scholar
  112. Temkin RJ (1974) Comparison of the structure of amorphous Ge and GaAs. Sol State Commun 15:1325CrossRefADSGoogle Scholar
  113. Wagner RS, Ellis WC (1964) Vapor–liquid-solid mechanism of single crystal growth. Appl Phys Lett 4:89CrossRefADSGoogle Scholar
  114. Waire D, Ashby MF, Logan J, Weins MJ (1971) On the use of pair potentials to calculate the properties of amorphous metals. Acta Metall 19:779CrossRefGoogle Scholar
  115. Wang LG, Kratzer P, Scheffler M, Moll N (1999) Formation and stability of self-assembled coherent islands in highly mismatched heteroepitaxy. Phys Rev Lett 82:4042CrossRefADSGoogle Scholar
  116. Wang X-L, Voliotis V (2006) Epitaxial growth and optical properties of semiconductor quantum wires. J Appl Phys 99:121301CrossRefADSGoogle Scholar
  117. Warren BE (1990) X-ray diffraction. Dover, New YorkGoogle Scholar
  118. Wegscheider W, Pfeiffer LN, Dignam MM, Pinczuk A, West KW, McCall SL, Hull R (1993) Appl Phys Lett 71:4071CrossRefGoogle Scholar
  119. Wells AF (2012) Structural inorganic chemistry, 5th edn. Oxford University Press, OxfordGoogle Scholar
  120. Whittingham MS, Jacobson AJ (eds) (1982) Intercalation chemistry. Academic Press, New YorkGoogle Scholar
  121. Woggon U (1997) Optical properties of semiconductor quantum dots. Springer, BerlinGoogle Scholar
  122. Wood DM, Zunger A (1988) Epitaxial effects on coherent phase diagrams of alloys. Phys Rev Lett 61:1501CrossRefADSGoogle Scholar
  123. Wood DM, Wei S-H, Zunger A (1988) Stability and electronic structure of ultrathin [001] (GaAs)m(AlAs)m superlattices. Phys Rev B 37:1342CrossRefADSGoogle Scholar
  124. Xu T, Zhou L, Wang Y, Özcan AS, Ludwig KF (2007) GaN quantum dot superlattices grown by molecular beam epitaxy at high temperature. J Appl Phys 102:073517CrossRefADSGoogle Scholar
  125. Yu LH, Yao KL, Liu ZL (2004) Electronic structures of filled tetrahedral semiconductors LiMgN and LiZnN: conduction band distortion. Phys B 353:278CrossRefADSGoogle Scholar
  126. Zachariasen WH (1932) The atomic arrangement in glass. J Am Chem Soc 54:3841CrossRefGoogle Scholar
  127. Zachariasen WH (2004) Theory of X-ray diffraction in crystals. Dover, New YorkGoogle Scholar
  128. Zunger A (1985) Ternary semiconductors and ordered pseudobinary alloys: electronic structure and predictions of new materials. Int J Quant Chem 28:629CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.NaplesUSA
  2. 2.Institut für Festkörperphysik, EW5-1Technische Universität BerlinBerlinGermany

Personalised recommendations