• Karl W. Böer
  • Udo W. PohlEmail author
Living reference work entry

Latest version View entry history



There exists a large diversity of superconductors following different mechanisms to achieve the superconducting phase. Low-temperature superconductivity appears in metals and degenerate semiconductors; it is induced by the formation of electron pairs in a bipolaron state referred to as Cooper pair. The superconductive state is separated from the normal-conductivity state by an energy gap below the Fermi energy. This gap appears at the critical temperature and widens as the temperature decreases. In type I low-temperature superconductors an external magnetic field is expelled from the bulk up to an upper value, which eliminates superconductivity. In type II superconductors an array of flux lines penetrates into the bulk above a lower critical field, creating a mixed normal and superconductive phase up to the upper critical field.

High-temperature superconductivity of type II is observed mostly in layered compounds such as cuprates and iron pnictides, with critical temperatures exceeding 100 K. Superconductivity in these materials is usually carried by hole pairs and requires sufficient doping. The mechanism of pair formation differs from that in metals and involves an interaction with spin fluctuations. The symmetry of the layered superconductive system and of the superconductive gap is lower than in the basically isotropic metals; in cuprates pairs with a lateral d symmetry are found.


Anderson RVB model BCS theory Ceramic superconductor Cooper pair Critical temperature Cuprates Flux-line lattice High-Tc superconductor Isotope effect Jospehson tunneling London penetration depth Magnetic ordering Meissner phase Meissner-Ochsenfeld effect Organic superconductor Pnictides Superconduction energy-gap SQUID Two-fluid model Type I and II superconductors Vortices 


  1. Allen PB, Mitrović B (1982) Theory of superconducting Tc. Solid State Phys 37:1Google Scholar
  2. Anderson P (1987) The resonating valence bond state in La2CuO4 and superconductivity. Science 235:1196CrossRefADSGoogle Scholar
  3. Appel J (1966) Superconductivity in pseudoferroelectrics. Phys Rev Lett 17:1045Google Scholar
  4. Bardeen J, Cooper LN, Schrieffer JR (1957) Theory of superconductivity. Phys Rev 108:1175.CrossRefADSMathSciNetzbMATHGoogle Scholar
  5. Batlogg B (1991) Physical properties of high-Tc superconductors. Phys Today 44:44CrossRefGoogle Scholar
  6. Bednorz JG, Müller KA (1986) Possible high-Tc superconductivity in the Ba-La-Cu-O system. Z Phys B 64:189CrossRefADSGoogle Scholar
  7. Bill A, Morawitz H, Kresin VZ (2003) Electronic collective modes and superconductivity in layered conductors. Phys Rev B 68:144519CrossRefADSGoogle Scholar
  8. Blatt JM (1961) Persistent ring currents in an ideal Bose gas. Phys Rev Lett 7:82CrossRefADSzbMATHGoogle Scholar
  9. Boebinger GS, Ando A, Passner A, Kimura T, Okuya M, Shimoyama J, Kishio K, Tamasaku K, Ichikawa N, Uchida S (1996) Insulator-to-metal crossover in the normal state of La2−xSrxCuO4 near optimum doping. Phys Rev Lett 77:5417CrossRefADSGoogle Scholar
  10. Buckel W, Kleiner R (2004) Superconductivity: fundamentals and applications. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  11. Chen G, Goddard WA (1988) The magnon pairing mechanism of superconductivity in cuprate ceramics. Science 239:899CrossRefADSGoogle Scholar
  12. Chu CW (1997) High-temperature superconducting materials: a decade of impressive advancement of Tc. IEEE Trans Appl Supercond 7:80CrossRefADSGoogle Scholar
  13. Chu CW, Hor PH, Meng RL, Gao L, Huang ZJ, Wang YQ (1987) Evidence for superconductivity above 40 K in the La-Ba-Cu-O compound system. Phys Rev Lett 58:405CrossRefADSGoogle Scholar
  14. Cohen ML (1964) Superconductivity in many-valley semiconductors and in semimetals. Phys Rev 134:A511Google Scholar
  15. De Gennes PG (1966) Superconductivity in metals and alloys. Benjamin, New YorkzbMATHGoogle Scholar
  16. Fetter AL, Walecka JD (1971) Quantum theory of many-particle systems. McGraw-Hill, New YorkGoogle Scholar
  17. Gurevich VL, Larkin AI, Firsov YuA (1962) On the possibility of superconductivity in semiconductors. Sov Phys Sol State 4:131Google Scholar
  18. Gurvitch M, Fiory AT (1987) Resistivity of La1.825Sr0.175CuO4 and YBa2Cu3O7 to 1100 K: absence of saturation and its implications. Phys Rev Lett 59:1337CrossRefADSGoogle Scholar
  19. Harris JM, Yan YF, Ong NP (1992) Experimental test of the T2 law for the Hall angle from Tc to 500 K in oxygen-reduced YBa2Cu3O6+x crystals. Phys Rev B 46:14293CrossRefADSGoogle Scholar
  20. Harshman DR, Mills AP (1992) Concerning the nature of high-Tc superconductivity: Survey of experimental properties and implications for interlayer coupling. Phys Rev B 45:10684Google Scholar
  21. Hein RA , Gibson JW, Mazelsky R, Miller RC, Hulm JK (1964) Superconductivity in germanium telluride. Phys Rev Lett 12:320Google Scholar
  22. Hosono H, Ren Z-A (2009) Focus on iron-based superconductors. New J Phys 11:025003CrossRefGoogle Scholar
  23. Hussey NE (2007) Normal state transport properties. In: Schrieffer JR, Brooks JS (eds) Handbook of high-temperature superconductivity. Theory and experiment. Springer, New York, pp 399–425CrossRefGoogle Scholar
  24. Hwang HY, Batlogg B, Takagi H, Kao HL, Kwo J, Cava RJ, Krajewski JJ, Peck WF Jr (1994) Scaling of the temperature dependent Hall effect in La2−xSrxCuO4. Phys Rev Lett 72:2636CrossRefADSGoogle Scholar
  25. Ishida K, Nakai Y, Hosono H (2009) To what extent iron-pnictide new superconductors have been clarified: a progress report. J Phys Soc Jpn 78:062001CrossRefADSGoogle Scholar
  26. Ishiguro T, Yamaji K, Saito G (1998) Organic superconductors. Springer, BerlinCrossRefGoogle Scholar
  27. Jérome D (1994) Organic superconductors. Solid State Commun 92:89CrossRefADSGoogle Scholar
  28. Joynt R, Taillefer L (2002) The superconducting phases of UPt3. Rev Mod Phys 74:235CrossRefADSGoogle Scholar
  29. Kirtley JR, Tsuei CC, Ariando A, Verwijs CJM, Harkema S, Hilgenkamp H (2006) Angle-resolved phase-sensitive determination of the in-plane gap symmetry in YBa2Cu3O7−δ. Nat Phys 2:190CrossRefGoogle Scholar
  30. Koitzsch A, Borisenko SV, Kordyuk AA, Kim TK, Knupfer M, Fink J, Golden MS, Koops W, Berger H, Keimer B, Lin CT, Ono S, Ando Y, Follath R (2004) Origin of the shadow Fermi surface in Bi-based cuprates. Phys Rev B 69:220505CrossRefADSGoogle Scholar
  31. Lee PA, Nagaosa N, Wen XG (2006) Doping a Mott insulator: physics of high-temperature superconductivity. Rev Mod Phys 78:17CrossRefADSGoogle Scholar
  32. Leggett AJ (2006) What DO we know about high Tc? Nat Phys 2:134CrossRefGoogle Scholar
  33. Little WA (1992) Generalization of BCS superconductivity to non-phonon mediated interactions: the excitonic interaction. In: Maekawa S, Sato M (eds) Physics of high-temperature superconductors. Springer, Heidelberg, pp 113–124CrossRefGoogle Scholar
  34. London F, London H (1935) The electromagnetic equations of the supraconductor. Proc Roy Soc (London) A 149:72Google Scholar
  35. Matsushita T (2014) Flux pinning in superconductors. Springer, BerlinCrossRefGoogle Scholar
  36. Meissner W, Ochsenfeld R (1933) Ein neuer Effekt bei Eintritt der Supraleitfähigkeit. Naturwiss 21:787 (A new effect at the onset of superconductivity, in German)Google Scholar
  37. Nakayama Y, Motohashi T, Otzschi K, Shimoyama J, Kishio K (2000) In-plane anisotropy of critical current density in Bi1.6Pb0.6Sr1.8CaCu2.0Oy. Physica C 341:1477CrossRefADSGoogle Scholar
  38. Onsager L (1961) Magnetic flux through a superconducting ring. Phys Rev Lett 7:50CrossRefADSGoogle Scholar
  39. Plakida N (2010) High-temperature cuprate superconductors. Springer, BerlinCrossRefGoogle Scholar
  40. Platé M, Mottershead JDF, Elfimov IS, Peets DC, Liang R, Bonn DA, Hardy WN, Chiuzbaian S, Falub M, Shi M, Patthey L, Damascelli A (2005) Fermi surface and quasiparticle excitations of overdoped Tl2Ba2CuO6+δ. Phys Rev Lett 95:077001CrossRefADSGoogle Scholar
  41. Renner C, Revaz B, Genoud J-Y, Kadowaki K, Fischer Ø (1998) Pseudogap precursor of the superconducting gap in under- and overdoped Bi2Sr2CaCu2O8+δ. Phys Rev Lett 80:149CrossRefADSGoogle Scholar
  42. Reynolds CA, Serin B, Wright WH, Nesbitt LB (1950) Superconductivity of isotopes of mercury. Phys Rev 78:487CrossRefADSGoogle Scholar
  43. Schooley JF,Hosler WR, Cohen ML (1964) Superconductivity in semiconducting SrTiO3. Phys Rev Let. 12:474Google Scholar
  44. Schrieffer JR (1964) Theory of superconductivity. Benjamin, New YorkzbMATHGoogle Scholar
  45. Schrieffer JR (1991) The influence of spin fluctuations on the physical properties of high Tc materials. Physica C 185:17CrossRefADSGoogle Scholar
  46. Schrieffer JR, Wen X-G, Zhang S-C (1988) Spin-bag mechanism of high-temperature superconductivity. Phys Rev Lett 60:944CrossRefADSGoogle Scholar
  47. Schwarz A, Liebmann M, Pi UH, Wiesendanger R (2010) Real space visualization of thermal fluctuations in a triangular flux-line lattice. New J Phys 12:033022CrossRefGoogle Scholar
  48. Segawa K, Ando Y (2004) Intrinsic Hall response of the CuO2 planes in a chain-plane composite system of YBa2Cu3Oy. Phys Rev B 69:104521CrossRefADSGoogle Scholar
  49. Stewart GR (1984) Heavy-fermion systems. Rev Mod Phys 56:755CrossRefADSGoogle Scholar
  50. Tajima Y, Hikita M, Ishii T, Fuke H, Sugiyama K, Date M, Yamagishi A, Katsui A, Hidaka Y, Iwata T, Tsurumi S (1988) Upper critical field and resistivity of single-crystal EuBa2Cu3Oy: direct measurements under high field up to 50 T. Phys Rev B 37:7956CrossRefADSGoogle Scholar
  51. Tajima S, Kaneko T, Wada T, Tomeno I, Tai K, Mizuo Y, Yamauchi H, Koshizuka K, Ido T, Uchida S (1991) Plasmons in high-Tc superconducting cuprates. Physica C 185:1013CrossRefADSGoogle Scholar
  52. Tallon JL, Bernhard C, Shaked H, Hitterman RL, Jorgensen JD (1995) Generic superconducting phase behavior in high-Tc cuprates: Tc variation with hole concentration in YBa2Cu3O7−δ. Phys Rev B 51:12911CrossRefADSGoogle Scholar
  53. Terai T, Kobayashi T, Ito Y, Kishio K, Shimoyama J (1997) Change in superconducting properties of Bi-2212 single crystal due to fast neutron irradiation followed by thermal annealing. Physica C 282:2285CrossRefADSGoogle Scholar
  54. Theuss H (1993) Flux line pinning by point defects in single crystalline high-Tc. Physica C 208:155CrossRefADSGoogle Scholar
  55. Townsend P, Sutton J (1962) Investigation by electron tunneling of the superconducting energy gaps in Nb, Ta, Sn and Pb. Phys Rev 128:591CrossRefADSGoogle Scholar
  56. Tsuei CC, Kirtley JR, Ren ZF, Wang JH, Raffy H, Li ZZ (1997) Pure dx2−y2 order-parameter symmetry in the tetragonal superconductor Tl2Ba2CuO6+δ. Nature 387:481CrossRefADSGoogle Scholar
  57. van Dover RB, Gyorgy EM, Schneemeyer LF, Mitchell JW, Rao KV, Puzniak R, Waszczak JV (1989) Critical currents near 106 A cm−2 at 77 K in neutron-irradiated single-crystal YBa2Cu3O7. Nature 342:55CrossRefADSGoogle Scholar
  58. Varma CM (1997) Non-fermi-liquid states and pairing instability of a general model of copper oxide metals. Phys Rev B 55:14554CrossRefADSGoogle Scholar
  59. Varma CM, Schmitt-Rink S, Abrahams E (1987) Charge transfer excitations and superconductivity in “ionic” metals. Solid State Commun 62:681CrossRefADSGoogle Scholar
  60. Xu X, Fang J, Cao X, Li K (1995) The critical current density and the pinning mechanism of epitaxial YBa2Cu3O7−δ thin films. Solid State Commun 93:291CrossRefADSGoogle Scholar
  61. Zhang W, Bennemann KH (1995) Theory of magnetic textures in high-Tc superconductors: electron versus hole doping dependence. J Phys Condens Matter 7:1335CrossRefADSGoogle Scholar

Copyright information

© Springer International Publishing AG 2020

Authors and Affiliations

  1. 1.NaplesUSA
  2. 2.Institut für Festkörperphysik, EW5-1Technische Universität BerlinBerlinGermany

Personalised recommendations