Interaction of Light with Solids

  • Karl W. Böer
  • Udo W. PohlEmail author
Living reference work entry

Latest version View entry history



The interaction of light with solids is described by Maxwell’s equations, which treat the solid as a continuum and lead to its optical parameters as a function of the frequency of the electromagnetic radiation: the complex dielectric constant. The dielectric constant describes the ability of a solid to screen an electric field – with electronic and ionic contributions – and is one of the most important material parameters. This function is closely related to the index of refraction and the optical absorption (or extinction) coefficient. All these parameters are derived from measured quantities: the transmitted and reflected light as a function of wavelength, impinging angle, and polarization.

A periodic modulation of the dielectric constant along a spatial direction leads to a photonic bandgap for the propagation of specific modes along this direction, analogous to the electronic bandgap for electrons traveling in the periodic crystal potential. A complete bandgap for propagation along any direction can be created for three-dimensional periodicity; defects given by deviations from periodicity lead to localized states in such photonic crystals, similar to effects in the electronic counterpart, allowing for, e.g., waveguiding or suppresion of spontaneous emission.

At high field amplitudes, nonlinear optical effects occur due to the nonparabolicity of the lattice potential. These effects can be described by a field-dependent dielectric function. The resulting nonharmonic oscillations permit mixing of different signals with corresponding change in frequency and amplitude.


Absorption Dielectric constant Dielectric function Dielectric screening Electro-optical effects Ellipsometry Fresnel coefficient Fresnel equations Index of refraction Metamaterial Microcavity Nonlinear optical effects Optical constants Optical defect Photonic bandgap structures Photonic crystals Reflectance Reflection TE mode TM mode Transmittance Transmission Upconversion 


  1. Armstrong JA, Bloembergen N, Ducuing J, Pershan PS (1962) Interactions between light waves in a nonlinear dielectric. Phys Rev 127:1918ADSCrossRefGoogle Scholar
  2. Aspnes DE (1976) Spectroscopic ellipsometry of solids. In: Seraphin BO (ed) Optical properties of solids: new developments. North-Holland, Amsterdam, p 799Google Scholar
  3. Aspnes DE (1980) Modulation spectroscopy/electric field effects on the dielectric function of semiconductors. In: Moss TS, Balkanski M (eds) Optical properties of solids, vol 2, North-Holland, Amsterdam, p 109Google Scholar
  4. Aspnes DE, Studna AA (1983) Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV. Phys Rev B 27:985ADSCrossRefGoogle Scholar
  5. Azzam RMA, Bashara NM (1987) Ellipsometry and polarized light. Elsevier Science BV, AmsterdamCrossRefGoogle Scholar
  6. Balkanski M, Moss TS (1994) Optical properties of semiconductors. North-Holland, AmsterdamGoogle Scholar
  7. Basu PK (1998) Theory of optical processes in semiconductors. Clarendon Press, OxfordGoogle Scholar
  8. Bayer M, Reinecke TL, Weidner F, Larionov A, McDonald A, Forchel A (2001) Inhibition and enhancement of the spontaneous emission of quantum dots in structured microresonators. Phys Rev Lett 86:3168ADSCrossRefGoogle Scholar
  9. Birner A, Busch K, Müller F (1999) Photonische Kristalle. Phys Bl 55(4):27 (Photonic crystals, in German)CrossRefGoogle Scholar
  10. Blanco A, Chomski E, Grabtchak S, Ibisate M, John S, Leonard SW, Lopez C, Meseguer F, Miguez H, Mondia JP, Ozin GA, Toader O, van Driel HM (2000) Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres. Nature 405:437ADSCrossRefGoogle Scholar
  11. Bloembergen N (1982) Nonlinear optics and spectroscopy. Rev Mod Phys 54:685ADSCrossRefGoogle Scholar
  12. Born M, Wolf E (2002) Principles of optics, 7th edn. Cambridge University Press, CambridgezbMATHGoogle Scholar
  13. Boyd RW (2008) Nonlinear optics, 3rd edn. Academic Press, LondonGoogle Scholar
  14. Bruggemann DAG (1935) Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. Ann Phys (Leipzig) 24:636 (Calculation of various physical constants of heterogeneous substances, in German)ADSCrossRefGoogle Scholar
  15. Brust D (1972) Model calculation of the q-dependent dielectric function of some zinc-blende semiconductors. Phys Rev B 5:435ADSCrossRefGoogle Scholar
  16. Burge DK, Bennett HE (1964) Effect of a thin surface film on the ellipsometric determination of optical constants. J Opt Soc Am 54:1428ADSCrossRefGoogle Scholar
  17. Busch K, Wehrspohn R (2003) Special issue on Photonic Crystals: optical materials for the 21th century. Phys Stat Sol A 197(3):593–702ADSCrossRefGoogle Scholar
  18. Busch K, von Freymann G, Linden S, Mingaleev SF, Tkeshelashvili L, Wegener M (2007) Periodic nanostructures for photonics. Phys Rep 444:101ADSCrossRefGoogle Scholar
  19. Byer RL, Herbst RL (1977) Parametric oscillation and mixing. Top Appl Phys 16:81CrossRefGoogle Scholar
  20. Cardona M (1969) Modulation spectroscopy. In: Seitz F, Turnbull D, Ehrenreich H (eds) Solid state physics, suppl 11. Academic Press, New YorkGoogle Scholar
  21. Chemla DS, Jerphagnon J (1980) Nonlinear optical properties. In: Moss TS, Balkanski M (eds) Handbook on semiconductors, vol 2. North-Holland, Amsterdam, pp 545–598Google Scholar
  22. Choy MM, Byer RL (1976) Accurate second-order susceptibility measurements of visible and infrared nonlinear crystals. Phys Rev B 14:1693ADSCrossRefGoogle Scholar
  23. Cohen MH (1963) Generalized self-consistent field theory and the dielectric formulation of the many-body problem. Phys Rev 130:1301ADSMathSciNetzbMATHCrossRefGoogle Scholar
  24. Cui TJ, Smith DR, Liu R (eds) (2010) Metamaterials: theory, design, and applications. Springer, New YorkGoogle Scholar
  25. Ejder E (1971) Refractive index of GaN. Phys Stat Sol A 6:445ADSCrossRefGoogle Scholar
  26. Engheta N, Ziolkowski RW (eds) (2006) Metamaterials: physics and engineering explorations. Wiley, HobokenGoogle Scholar
  27. Franken PA, Ward JF (1963) Optical harmonics and nonlinear phenomena. Rev Mod Phys 35:23ADSzbMATHCrossRefGoogle Scholar
  28. Gérard JM, Sermage B, Gayral B, Legrand B, Costard E, Thierry-Mieg V (1998) Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity. Phys Rev Lett 81:1110ADSCrossRefGoogle Scholar
  29. Haken H (1963) Theory of excitons II. In: Kuper CG, Whitfield GD (eds) Polarons and excitons. Oliver & Boyd, Edinburgh, p 294Google Scholar
  30. Ho K-M, Chan CT, Soukoulis CM, Biswas R, Sigalas M (1994) Photonic band gaps in three dimensions: new layer-by-layer periodic structures. Sol State Commun 89:413ADSCrossRefGoogle Scholar
  31. Hobden MV (1967) Phase-matched second-harmonic generation in biaxial crystals. J Appl Phys 38:4365ADSCrossRefGoogle Scholar
  32. Inoue K, Ohtaka K (eds) (2004) Photonic crystals. Springer, BerlinGoogle Scholar
  33. Joannopoulos JD, Johnson SG, Winn JN, Meade RD (2008) Photonic crystals – molding the flow of light, 2nd edn. Princeton University Press, PrincetonzbMATHGoogle Scholar
  34. John S (1987) Strong localization of photons in certain disordered dielectric superlattices. Phys Rev Lett 58:2486ADSCrossRefGoogle Scholar
  35. Kildal H, Iseler GW (1976) Laser-induced surface damage of infrared nonlinear materials. Appl Optics 15:3062ADSCrossRefGoogle Scholar
  36. Kildal H, Mikkelsen JC (1973) The nonlinear optical coefficient, phasematching, and optical damage in the chalcopyrite AgGaSe2. Opt Commun 9:315ADSCrossRefGoogle Scholar
  37. Kirchner A, Busch K, Soukoulis CM (1998) Transport properties of random arrays of dielectric cylinders. Phys Rev B 57:277ADSCrossRefGoogle Scholar
  38. Kurtz SK, Jerphagnon J, Choi MM (1979) Nonlinear dielectric susceptibilities. In: Hellwege KH, Hellwege AM (eds) Landolt-Börnstein new series III/11. Springer, Berlin, p 671Google Scholar
  39. Lee KF, Ahmad HB (1996) Fractional photon model of three-photon mixing in the non-linear interaction process. Opt Laser Technol 28:35ADSCrossRefGoogle Scholar
  40. Mandel P (2010) Nonlinear optics. Wiley-VCH, WeinheimGoogle Scholar
  41. Manley JM, Rowe HE (1959) General energy relations in nonlinear reactances. Proc IRE 47:2115Google Scholar
  42. Marple DTF (1964) Refractive index of GaAs. J Appl Phys 35:1241ADSCrossRefGoogle Scholar
  43. Maruani A, Oudar JL, Batifol E, Chemla DS (1978) Nonlinear spectroscopy of biexcitons in CuCl by resonant coherent scattering. Phys Rev Lett 41:1372ADSCrossRefGoogle Scholar
  44. Meintjes EM, Raab RE (1999) A new theory of Pockels birefringence in non-magnetic crystals. J Opt A 1:146ADSCrossRefGoogle Scholar
  45. Midwinter JE, Warner J (1965) The effects of phase matching method and of uniaxial crystal symmetry on the polar distribution of second-order non-linear optical polarization. Brit J Appl Phys 16:1135ADSCrossRefGoogle Scholar
  46. Moss TS, Burrell GJ, Ellis B (1973) Semiconductor Optoelectronics. Wiley, New YorkGoogle Scholar
  47. Nara H (1965) Screened impurity potential in Si. J Phys Soc Jpn 20:778ADSCrossRefGoogle Scholar
  48. Nara H, Morita A (1966) Shallow donor potential in silicon. J Phys Soc Jpn 21:1852ADSCrossRefGoogle Scholar
  49. Nazarewicz P, Rolland P, da Silva E, Balkanski M (1962) Abac chart for fast calculation of the absorption and reflection coefficients. Appl Optics 1:369ADSCrossRefGoogle Scholar
  50. Noda S, Tomoda K, Yamamoto N, Chutinan A (2000) Full three-dimensional photonic bandgap crystals at near-infrared wavelengths. Science 289:604ADSCrossRefGoogle Scholar
  51. Palik ED (ed) (1985) Handbook of optical constants of solids I. Academic Press, New YorkGoogle Scholar
  52. Palik ED (ed) (1991) Handbook of optical constants of solids II. Academic Press, San DiegoGoogle Scholar
  53. Penn DR (1962) Wave-number-dependent dielectric function of semiconductors. Phys Rev 128:2093ADSzbMATHCrossRefGoogle Scholar
  54. Petroff Y (1980) Optical properties of semiconductors above the band edge. In: Moss TS, Balkanski M (eds) Optical properties of solids, vol 2, Handbook on semiconductors. North-Holland, Amsterdam, pp 1–44Google Scholar
  55. Philipp HR, Taft EA (1960) Optical constants of silicon in the region 1 to 10 eV. Phys Rev 120:37ADSCrossRefGoogle Scholar
  56. Pollak FH, Shen H (1993) Modulation spectroscopy of semiconductors: bulk/thin film, microstructures, surfaces/interfaces and devices. Mater Sci Eng R10:275Google Scholar
  57. Purcell EM, Torrey HC, Pound RV (1946) Resonance absorption by nuclear magnetic moments in a solid. Phys Rev 69:37ADSCrossRefGoogle Scholar
  58. Rabi II, Millman S, Kusch P, Zacharias JR (1939) The molecular beam resonance method for measuring nuclear magnetic moments; the magnetic moments of 3Li6, 3Li7 and 9 F19. Phys Rev 55:526ADSCrossRefGoogle Scholar
  59. Rabin H, Tang CL (eds) (1975) Quantum electronics: a treatise, vol 1, Nonlinear optics. Academic Press, New YorkGoogle Scholar
  60. Reithmaier JP, Sek G, Löffler A, Hofmann C, Kuhn S, Reitzenstein S, Keldysh LV, Kulakovskii VD, Reinecke TL, Forchel A (2004) Strong coupling in a single quantum dot-semiconductor microcavity system. Nature 432:197ADSCrossRefGoogle Scholar
  61. Rice A, Jin Y, Ma XF, Zhang X-C, Bliss D, Larkin J, Alexander M (1994) Terahertz optical rectification from <110> zinc-blende crystals. Appl Phys Lett 64:1324ADSCrossRefGoogle Scholar
  62. Russell PSJ (1986) Optics of Floquet-Bloch waves in dielectric gratings. Appl Phys B 39(4):231ADSCrossRefGoogle Scholar
  63. Rustagi KC (1970) Effect of carrier scattering on nonlinear optical susceptibility due to mobile carriers in InSb, InAs, and GaAs. Phys Rev B 2:4053ADSCrossRefGoogle Scholar
  64. Sakoda K (2001) Optical properties of photonic crystals. Springer, BerlinCrossRefGoogle Scholar
  65. Seraphin BO (1973) Proceedings of the first international conference on modulation spectroscopy. Surf Sci 37:1–1011ADSCrossRefGoogle Scholar
  66. Seraphin BO, Bottka N (1965) Franz-Keldysh effect of the refractive index in semiconductors. Phys Rev 139:A560ADSCrossRefGoogle Scholar
  67. Sharma AC, Auluck S (1981) Transverse dielectric function for a model semiconductor. Phys Rev B 24:4729ADSCrossRefGoogle Scholar
  68. Sheik-Bahae M, Wang J, Van Stryland EW (1994) Nondegenerate optical Kerr effect in semiconductors. IEEE J Quantum Electron 30:249ADSCrossRefGoogle Scholar
  69. Shelby RA, Smith DR, Schultz S (2001) Experimental verification of a negative index of refraction. Science 292:77ADSCrossRefGoogle Scholar
  70. Soukoulis CM, Wegener M (2010) Optical metamaterials – more bulky and less lossy. Science 330:1633ADSCrossRefGoogle Scholar
  71. Stegeman GI, Stegeman RA (2012) Nonlinear optics: phenomena, materials and devices. Wiley, HobokenzbMATHGoogle Scholar
  72. Stern F (1963) Elementary theory of the optical properties of solids. In: Seitz F, Turnbull D (eds) Sol state physics, vol 15. Academic Press, New York, p 299Google Scholar
  73. Tosatti E, Pastori Parravicini G (1971) Model semiconductor dielectric function. J Phys Chem Sol 32:623ADSCrossRefGoogle Scholar
  74. van Vechten JA (1980) A simple man’s view of the thermochemistry of semiconductors. In: Moss TS, Keller SP (eds) Handbook on semiconductors, vol 3. North-Holland, Amsterdam, pp 1–111Google Scholar
  75. Veselago VG (1968) The electrodynamics of substances with simultaneously negative values of ε and μ. Sov PhysUspekhi 10:509ADSCrossRefGoogle Scholar
  76. Villeneuve PR, Piché M (1994) Photonic bandgaps in periodic dielectric structures. Progr Quantum Electr 18:153ADSCrossRefGoogle Scholar
  77. Walter JP, Cohen ML (1970) Wave-vector-dependent dielectric function for Si, Ge, GaAs, and ZnSe. Phys Rev B 2:1821ADSCrossRefGoogle Scholar
  78. Wang CC, Ressler NW (1969) Nonlinear optical effects of conduction electrons in semiconductors. Phys Rev 188:1291ADSCrossRefGoogle Scholar
  79. Wang CC, Ressler NW (1970) Observation of optical mixing due to conduction electrons in n-type germanium. Phys Rev B 2:1827ADSCrossRefGoogle Scholar
  80. Ward L (1994) The optical constants of bulk materials and films, 2nd edn. Institute of Physics Publishing, BristolGoogle Scholar
  81. Warner J (1975) Quantum electronics: a treatise, vol 1, Nonlinear optics. Academic Press, New York, p 103Google Scholar
  82. Wolf PA, Pearson GA (1966) Theory of optical mixing by mobile carriers in semiconductors. Phys Rev Lett 17:1015ADSCrossRefGoogle Scholar
  83. Yablonovitch E (1987) Inhibited spontaneous emission in solid-state physics and electronics. Phys Rev Lett 58:2059ADSCrossRefGoogle Scholar
  84. Yablonovitch E, Gmitter TJ, Leung KM (1991) Photonic band structure: the face-centered-cubic case employing nonspherical atoms. Phys Rev Lett 67:2295ADSCrossRefGoogle Scholar
  85. Zernike F, Midwinter JE (1973) Applied non-linear optics. Wiley, New YorkGoogle Scholar
  86. Zouhdi S, Sihvola A, Vinogradov AP (2009) Metamaterials and plasmonics: fundamentals, modelling, applications. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.NaplesUSA
  2. 2.Institut für Festkörperphysik, EW5-1Technische Universität BerlinBerlinGermany

Personalised recommendations