Encyclopedia of Lunar Science

Living Edition
| Editors: Brian Cudnik

Origin and Evolution of the Moon: Tungsten Isotopic Constraints

  • Thomas S. KruijerEmail author
  • Thorsten Kleine
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-05546-6_81-1

Introduction

The Moon most likely formed as the result of a collision between the proto-Earth and a differentiated body possibly the size of Mars (Cameron and Benz 1991; Hartmann and Davis 1975). The enormous amount of energy released by this giant impact caused widespread melting on the proto-Earth and the ejection of material into Earth’s orbit from which the Moon subsequently accreted. Upon accretion of the Moon, the lunar mantle underwent global silicate differentiation most likely facilitated by a lunar magma ocean (e.g., Wood et al. 1970). Magma ocean crystallization likely produced the wide diversity of lunar source rocks and involved the successive crystallization of mafic cumulates consisting of olivine and pyroxene, followed by crystallization of plagioclase which floated to the lunar surface to form the lunar crust consisting of ferroan anorthosites (FAN). Finally, the residual liquid of the lunar magma ocean represents a separate component within the Moon termed KREEP...

This is a preview of subscription content, log in to check access.

References

  1. Armytage RMG, Georg RB, Williams HM, Halliday AN (2012) Silicon isotopes in lunar rocks: implications for the Moon’s formation and the early history of the earth. Geochim Cosmochim Acta 77:504–514.  https://doi.org/10.1016/j.gca.2011.10.032 ADSCrossRefGoogle Scholar
  2. Barboni M, Boehnke P, Keller B, Kohl IE, Schoene B, Young ED, McKeegan KD (2017) Early formation of the Moon 4.51 billion years ago. Sci Adv 3:e1602365ADSCrossRefGoogle Scholar
  3. Borg LE, Gaffney AM, Shearer CK (2015) A review of lunar chronology revealing a preponderance of 4.34–4.37 Ga ages. Meteorit Planet Sci 50:715–732ADSCrossRefGoogle Scholar
  4. Cameron AGW, Benz W (1991) The origin of the moon and the single impact hypothesis IV. Icarus 92:204–216.  https://doi.org/10.1016/0019-1035(91)90046-V ADSCrossRefGoogle Scholar
  5. Canup RM (2012) Forming a Moon with an Earth-like composition via a giant impact. Science 338:1052–1055.  https://doi.org/10.1126/science.1226073 ADSCrossRefGoogle Scholar
  6. Ćuk M, Stewart ST (2012) Making the Moon from a fast-spinning Earth: a giant impact followed by resonant despinning. Science 338:1047–1052.  https://doi.org/10.1126/science.1225542 ADSCrossRefGoogle Scholar
  7. Dauphas N, Burkhardt C, Warren P, Teng F-Z (2014) Geochemical arguments for an Earth-like Moon-forming impactor. Philos. Trans. R. Soc. A 372, 20130244Google Scholar
  8. Day JMD, Walker RJ (2015) Highly siderophile element depletion in the Moon. Earth Planet Sci Lett 423:114–124ADSCrossRefGoogle Scholar
  9. Hartmann WK, Davis DR (1975) Satellite-sized planetesimals and lunar origin. Icarus 24:504–515.  https://doi.org/10.1016/0019-1035(75)90070-6 ADSCrossRefGoogle Scholar
  10. Kleine T, Walker RJ (2017) Tungsten isotopes in planets. Annu Rev Earth Planet Sci.  https://doi.org/10.1146/annurev-earth-063016-020037
  11. Kleine T, Palme H, Mezger K, Halliday AN (2005) Hf-W chronometry of lunar metals and the age and early differentiation of the Moon. Science 310:1671–1674.  https://doi.org/10.1126/science.1118842 ADSCrossRefGoogle Scholar
  12. Kruijer TS, Kleine T (2017) Tungsten isotopes and the origin of the Moon. Earth Planet Sci Lett 475:15–24.  https://doi.org/10.1016/j.epsl.2017.07.021 ADSCrossRefGoogle Scholar
  13. Kruijer TS, Kleine T, Fischer-Gödde M, Sprung P (2015) Lunar tungsten isotopic evidence for the late veneer. Nature 520:534–537.  https://doi.org/10.1038/nature14360 ADSCrossRefGoogle Scholar
  14. Lee D, Halliday AN, Snyder GA, Taylor LA (1997) Age and origin of the Moon. Science (80-. ) 278:1098–1103.  https://doi.org/10.1126/science.278.5340.1098 ADSCrossRefGoogle Scholar
  15. Lee D-C, Halliday AN, Leya I, Wieler R, Wiechert U (2002) Cosmogenic tungsten and the origin and earliest differentiation of the Moon. Earth Planet Sci Lett 198:267–274.  https://doi.org/10.1016/S0012-821X(02)00533-2 ADSCrossRefGoogle Scholar
  16. Leya I, Wieler R, Halliday AN (2000) Cosmic-ray production of tungsten isotopes in lunar samples and meteorites and its implications for Hf–W cosmochemistry. Earth Planet Sci Lett 175:1–12.  https://doi.org/10.1016/S0012-821X(99)00295-2 ADSCrossRefGoogle Scholar
  17. Lock SJ, Stewart ST (2017) The structure of terrestrial bodies: impact heating, corotation limits, and synestias. J Geophys Res Planets 122:950–982.  https://doi.org/10.1002/2016JE005239 ADSCrossRefGoogle Scholar
  18. Pahlevan K, Stevenson DJ (2007) Equilibration in the aftermath of the lunar- forming giant impact. Earth Planet Sci Lett 262:438–449. http://dx.doi.org/.  https://doi.org/10.1016/j.epsl.2007.07.055 ADSCrossRefGoogle Scholar
  19. Righter K, Shearer CK (2003) Magmatic fractionation of Hf and W: constraints on the timing of core formation and differentiation in the Moon and Mars. Geochim Cosmochim Acta 67:2497–2507.  https://doi.org/10.1016/S0016-7037(02)01349-2 ADSCrossRefGoogle Scholar
  20. Touboul M, Kleine T, Bourdon B, Palme H, Wieler R (2007) Late formation and prolonged differentiation of the Moon inferred from W isotopes in lunar metals. Nature 450:1206–1209.  https://doi.org/10.1038/nature06428 ADSCrossRefGoogle Scholar
  21. Touboul M, Puchtel IS, Walker RJ (2015) Tungsten isotopic evidence for disproportional late accretion to the Earth and Moon. Nature 520:530–533.  https://doi.org/10.1038/nature14355 ADSCrossRefGoogle Scholar
  22. Wade J, Wood BJ (2016) The oxidation state and mass of the Moon-forming impactor. Earth Planet Sci Lett.  https://doi.org/10.1016/j.epsl.2016.02.053
  23. Wiechert U, Halliday AN, Lee D-C, Snyder GA, Taylor LA, Rumble D (2001) Oxygen isotopes and the Moon-forming Giant impact. Science 294:345–348ADSCrossRefGoogle Scholar
  24. Wood JA, Dickey JS, Marvin UB, Powell BN (1970) Lunar anorthosites and a geophysical model of the Moon. In: Proceedings of the Apollo 11 lunar science conference, Houston, pp 965–988Google Scholar
  25. Zhang J, Dauphas N, Davis AM, Leya I, Fedkin A (2012) The proto-Earth as a significant source of lunar material. Nat Geosci 5:251–255.  https://doi.org/10.1038/ngeo1429 ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Institut für PlanetologieUniversity of MünsterMünsterGermany
  2. 2.Nuclear and Chemical Sciences DivisionLawrence Livermore National LaboratoryLivermoreUSA

Section editors and affiliations

  • Edgar Sikko Steenstra
    • 1
  1. 1.Faculty of Earth and Life SciencesVrije UniversiteitAmsterdamThe Netherlands