Encyclopedia of Lunar Science

Living Edition
| Editors: Brian Cudnik

Mantle Convection

  • Doris BreuerEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-05546-6_214-1


Although the Moon is much smaller than the Earth, dynamic processes took place in its interior and helped shape its surface. It is suggested that compositionally driven convection was dominant in the early evolution after the solidification of the lunar magma ocean – often also termed as mantle overturn – and that thermally driven convection was mainly active after this overturn phase. Details of these processes are however controversially discussed, but during the last years, improvements in the numerical models and new rheological experiments have led to a better understanding and changed the view about the interior dynamics of the Moon. In this chapter, we will discuss various scenarios that have been suggested in the literature, point out their problems, and introduce the most likely scenario.

General Concept of Mantle Convection

Mantle convection in a planetary interior like in the lunar mantle describes large scale movement of solid mantle material. It is the...

This is a preview of subscription content, log in to check access.


  1. Borg LE, Gaffney AM, Shearer CK (2015) A review of lunar chronology revealing a preponderance of 4.34–4.37 Ga ages. Meteorit Planet Sci 50(4):715–732ADSCrossRefGoogle Scholar
  2. Boukare CE, Parmentier EM, Parman SW (2018) Timing of mantle overturn during magma ocean solidification. Earth Planet Sci Lett 491:216–225ADSCrossRefGoogle Scholar
  3. Byrne CJ (2007) A large basin on the near side of the Moon. Earth Moon Planet 101(3–4):153–188ADSCrossRefGoogle Scholar
  4. de Vries J, van den Berg A, van Westrenen W (2010) Formation and evolution of a lunar core from ilmenite-rich magma ocean cumulates. Earth Planet Sci Lett 292(1–2):139–147ADSCrossRefGoogle Scholar
  5. Dygert N, Hirth G, Liang Y (2016) A flow law for ilmenite in dislocation creep: implications for lunar cumulate mantle overturn. Geophys Res Lett 43(2):532–540ADSCrossRefGoogle Scholar
  6. Elkins-Tanton LT, Burgess S, Yin QZ (2011) The lunar magma ocean: reconciling the solidification process with lunar petrology and geochronology. Earth Planet Sci Lett 304(3–4):326–336ADSCrossRefGoogle Scholar
  7. Hess PC, Parmentier EM (1995) A model for the thermal and chemical evolution of the Moon’s interior: implications for the onset of mare volcanism. Earth Planet Sci Lett 134(3–4):501–514ADSCrossRefGoogle Scholar
  8. Laneuville M, Wieczorek MA, Breuer D, Tosi N (2013) Asymmetric thermal evolution of the Moon. J Geophys Res Planets 118(7):1435–1452ADSCrossRefGoogle Scholar
  9. Loper DE, Werner CL (2002) On lunar asymmetries 1. Tilted convection and crustal asymmetry. J Geophys Res Planets 107(E6):5046ADSCrossRefGoogle Scholar
  10. Maurice M, Tosi N, Schwinger S, Breuer D (2018) Prolonged lunar magma ocean by heat- piping from cumulate overturn. In: 6th European lunar symposium, Toulouse, 14–16 MayGoogle Scholar
  11. McCubbin FM, Jolliff BL, Nekvasil H et al (2011) Fluorine and chlorine abundances in lunar apatite: implications for heterogeneous distributions of magmatic volatiles in the lunar interior. Geochim Cosmochim Acta 75(17):5073–5093ADSCrossRefGoogle Scholar
  12. Meyer J, Elkins-Tanton LT, Wisdom J (2010) Coupled thermal–orbital evolution of the early Moon. Icarus 208(1):1–10ADSCrossRefGoogle Scholar
  13. Nemchin A, Timms N, Pidgeon R et al (2009) Timing of crystallization of the lunar magma ocean constrained by the oldest zircon. Nat Geosci 2(2):133ADSCrossRefGoogle Scholar
  14. Neumann GA, Zuber MT, Smith DE et al (1996) The lunar crust: global structure and signature of major basins. J Geophys Res Planets 101(E7):16841–16863CrossRefGoogle Scholar
  15. Ohtake M, Takeda H, Matsunaga T et al (2012) Asymmetric crustal growth on the Moon indicated by primitive farside highland materials. Nat Geosci 5(6):384ADSCrossRefGoogle Scholar
  16. Parmentier EM, Zhong S, Zuber MT (2002) Gravitational differentiation due to initial chemical stratification: origin of lunar asymmetry by the creep of dense KREEP? Earth Planet Sci Lett 201:473–480ADSCrossRefGoogle Scholar
  17. Rolf R, Zhu M, Wünnemann K, Werner SC (2017) The role of impact bombardement history in lunar evolution. Icarus 286:138–152ADSCrossRefGoogle Scholar
  18. Solomon SC, Longhi J (1977, March) Magma oceanography: 1. Thermal evolution. Paper presented in lunar and planetary science conference, vol 8, HoustonGoogle Scholar
  19. Spohn T, Konrad W, Breuer D, Ziethe R (2001) The longevity of lunar volcanism: implications of thermal evolution calculations with 2D and 3D mantle convection models. Icarus 149:54–65ADSCrossRefGoogle Scholar
  20. Stegman DR, Jellinek AM, Zatman SA et al (2003) An early lunar core dynamo driven by thermochemical mantle convection. Nature 421:143–146ADSCrossRefGoogle Scholar
  21. Tanton LT, Van Orman JA, Hager BH, Grove TL (2002) Re-examination of the lunar magma ocean cumulate overturn hypothesis: melting or mixing is required. Earth Planet Sci Lett 196(3–4):239–249ADSCrossRefGoogle Scholar
  22. Wagner TP, Grove TL (1997) Experimental constraints on the origin of lunar high-Ti ultramafic glasses. Geochim Cosmochim Acta 61(6):1315–1327ADSCrossRefGoogle Scholar
  23. Warren PH, Wasson JT (1979) The origin of KREEP. Rev Geophys 17(1):73–88ADSCrossRefGoogle Scholar
  24. Wasson JT, Warren PH (1980) Contribution of the mantle to the lunar asymmetry. Icarus 44(3):752–771ADSCrossRefGoogle Scholar
  25. Weber RC, Lin PY, Garnero EJ, Williams Q, Lognonne P (2011) Seismic detection of the lunar core. Science 331(6015):309–312ADSCrossRefGoogle Scholar
  26. Wieczorek MA, Phillips RJ (2000) The “Procellarum KREEP Terrane”: implications for mare volcanism and lunar evolution. J Geophys Res Planets 105(E8): 20417–20430CrossRefGoogle Scholar
  27. Yu S, Tosi N, Schwinger S et al (2018) Overturn of ilmenite-bearing cumulates in a rheologically-weak lunar interior. J Geophys Res Planets (under review)Google Scholar
  28. Zhang N, Parmentier EM, Liang Y (2013a) A 3-D numerical study of the thermal evolution of the Moon after cumulate mantle overturn: the importance of rheology and core solidification. J Geophys Res Planets 118(9):1789–1804ADSCrossRefGoogle Scholar
  29. Zhang N, Parmentier EM, Liang Y (2013b) Effects of lunar cumulate mantle overturn and megaregolith on the expansion and contraction history of the Moon. Geophys Res Lett 40(19):5019–5023ADSCrossRefGoogle Scholar
  30. Zhang N, Dygert N, Liang Y, Parmentier EM (2017) The effect of ilmenite viscosity on the dynamics and evolution of an overturned lunar cumulate mantle. Geophys Res Lett 44(13):6543–6552ADSCrossRefGoogle Scholar
  31. Zhao Y, de Vries J, van den Berg A P, Westrenen W (2018) The participation of imlenite- bearing cumulates in lunar mantle overturn. Earth Planet Sci Lett (under review)Google Scholar
  32. Zhong S, Parmentier EM, Zuber MT (2000) A dynamic origin for the global asymmetry of lunar mare basalts. Earth Planet Sci Lett 177(3–4):131–140ADSCrossRefGoogle Scholar
  33. Ziethe R, Seiferlin K, Hiesinger H (2009) Duration and extent of lunar volcanism: comparison of 3D convection models to mare basalt ages. Planet Space Sci 57:784–796ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.German Aerospace Center (DLR)Institute of Planetary ResearchBerlinGermany

Section editors and affiliations

  • Edgar Sikko Steenstra
    • 1
  1. 1.Faculty of Earth and Life SciencesVrije UniversiteitAmsterdamThe Netherlands