Advertisement

Synchrotron and FEL Studies of Matter at High Pressures

  • Malcolm I. McMahonEmail author
Living reference work entry

Abstract

Samples compressed to very high pressures are typically very small or exist for only a very short period of time. Researchers seeking to make x-ray studies of matter under such conditions have therefore always sought access to the brightest possible x-ray sources – synchrotrons – and, more recently, x-ray FELs. In this chapter, after a brief introduction and a short history of high-pressure science, I describe the techniques used to compress matter to pressures well above 1 million atmospheres (1 megabar or 100 GPa) both statically and dynamically and then review how experiments are conducted on such samples at both synchrotrons and XFELs. I conclude with a discussion about the opportunities afforded by the start-up of diffraction-limited synchrotrons and the new European XFEL.

Keywords

High-pressure X-ray diffraction X-ray spectroscopy Diamond anvil cell Large volume press Crystallography Static compression Dynamic compression Synchrotron XFEL 

Notes

Acknowledgements

The author would like to thank N. Dubrovinskaia, A. Dewaele, Y. Wang, H-P. Liermann, H.J. Lee, S. Klotz, T. Sakai, and Y. Gupta for providing images and figures used in this chapter. I would like to thank and acknowledge the numerous colleagues and collaborators who have contributed to the research and developments published by my group over the past 20 years that I have cited in this review. I would also like to thank the facility staff at synchrotrons and XFELs for their assistance and support in the experiments and technical developments. This work was supported by grants from the Engineering and Physical Sciences Research and the Royal Society and facilities and funding provided by SRS Daresbury Laboratory, the European Synchrotron Radiation Facility, the Advanced Photon Source, Diamond Light Source, and the Linac Coherent Light Source (LCLS). Use of the LCLS, SLAC National Accelerator Laboratory, is supported by the US Department of Energy, Office of Science, and Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515. The MEC instrument is supported by the US Department of Energy, Office of Science, and Office of Fusion Energy Sciences under Contract No. SF00515. The author is grateful to AWE Aldermaston for the support of a William Penney Fellowship.

References

  1. Advanced Photon Source, Early Science at the Upgraded Advanced Photon Source (2015). https:// www.aps.anl.gov/files/APS-Uploads/Aps-Upgrade/Beamlines/APS-%20Early-Science-1030 15-FINAL.pdf. Last accessed on 02 July 2018
  2. D.R. Allan, S.J. Clark, S. Parsons, M. Ruf, A high-pressure structural study of propionic acid and the application of CCD detectors in high-pressure single-crystal x-ray diffraction. J. Phys. Condens. Matter 12(39), L613–L620 (2000)ADSCrossRefGoogle Scholar
  3. G. Aquilanti, A. Trapananti, A. Karandikar, I. Kantor, C. Marini, O. Mathon, S. Pascarelli, R. Boehler, Melting of iron determined by X-ray absorption spectroscopy to 100 GPa. Proc. Natl. Acad. Sci. USA 112(PMC4593125), 12042–12045 (2015)ADSCrossRefGoogle Scholar
  4. J.R. Asay, M. Shahinpoor (eds), High-Pressure Shock Compression of Solids (Springer, New York, 1993)zbMATHGoogle Scholar
  5. A.S. Balchan, H.G. Drickamer, High pressure electrical resistance cell, and calibration points above 100 kilobars. Rev. Sci. Instrum. 32(3), 308–313 (1961)ADSCrossRefGoogle Scholar
  6. M. Baldini, W. Yang, G. Aquilanti, L. Zhang, Y. Ding, S. Pascarelli, W.L. Mao, High-pressure EXAFS measurements of crystalline Ge using nanocrystalline diamond anvils. Phys. Rev. B 84, 014111 (2011)ADSCrossRefGoogle Scholar
  7. D. Bancroft, E.L. Peterson, S. Minshall, Polymorphism of iron at high pressure. J. Appl. Phys. 27(3), 291–298 (1956)ADSCrossRefGoogle Scholar
  8. J.D. Barnett, H.T. Hall, High pressure-high temperature X-ray diffraction apparatus. Rev. Sci. Instrum. 35(2), 175 (1964)ADSCrossRefGoogle Scholar
  9. W.A. Bassett, The birth and development of laser heating in diamond anvil cells. Rev. Sci. Instrum. 72(2), 1270–1272 (2001). Workshop on Advances in Laser Heated Diamond Cell Techniques, Chicago, 25–27 May 2000 ADSCrossRefGoogle Scholar
  10. W.A. Bassett, Diamond anvil cell, 50th birthday. High Press. Res. 29(2), CP5–186 (2009)CrossRefGoogle Scholar
  11. W.A. Bassett, A.J. Anderson, R.A. Mayanovic, I.-M. Chou, Hydrothermal diamond anvil cell for XAFS studies of first-row transition elements in aqueous solution up to supercritical conditions. Chem. Geol. 167(1), 3–10 (2000)ADSCrossRefGoogle Scholar
  12. M.A. Baublitz, Arnold, V, & A.L. Ruoff, Energy dispersive-x-ray diffraction from high-pressure polycrystalline specimens using synchrotron radiation. Rev. Sci. Instrum. 52(11), 1616–1624 (1981)ADSCrossRefGoogle Scholar
  13. J.M. Besson, J.P. Pinceaux, Melting of helium at room temperature and high pressure. Science 206(4422), 1073–1075 (1979)ADSCrossRefGoogle Scholar
  14. J.M. Besson, R.J. Nelmes, G. Hamel, J.S. Loveday, G. Weill, S. Hull, Neutron powder diffraction above 10 GPa. PHYSICA B 180(Part B), 907–910 (1992). International Conference on Neutron Scattering (ICNS 91), Oxford, 27–30 Aug 1991Google Scholar
  15. R. Boehler, J.J. Molaison, B. Haberl, Novel diamond cells for neutron diffraction using multi-carat CVD anvils. Rev. Sci. Instrum. 88(8), 083905 (2017)ADSCrossRefGoogle Scholar
  16. R. Boehler, New diamond cell for single-crystal x-ray diffraction. Rev. Sci. Instrum. 77(11), 115103 (2006)ADSCrossRefGoogle Scholar
  17. P.W. Bridgman, Collected Experimental Papers by P.W. Bridgman (Harvard University Press, Cambridge, 1964)Google Scholar
  18. P.W. Bridgman, The linear compression of iron to 30,000,000 kg/cm3. Proc. Am. Acad. Arts Sci. 74(2), 11–20 (1940)CrossRefGoogle Scholar
  19. P.W. Bridgman, Linear compressions to 30,000 Kg/Cm, including relatively incompressible substances. Proc. Am. Acad. Arts Sci. 77(6), 189–234 (1949)CrossRefGoogle Scholar
  20. R. Briggs, M.G. Gorman, A.L. Coleman, R.S. McWilliams, E.E. McBride, D. McGonegle, J.S. Wark, L. Peacock, S. Rothman, S.G. Macleod, C.A. Bolme, A.E. Gleason, G.W. Collins, J.H. Eggert, D.E. Fratanduono, R.F. Smith, E. Galtier, E. Granados, H.J. Lee, B. Nagler, I. Nam, Z. Xing, M.I. McMahon, Ultrafast X-ray diffraction studies of the phase transitions and equation of state of scandium shock compressed to 82 GPa. Phys. Rev. Lett. 118, 025501 (2017)ADSCrossRefGoogle Scholar
  21. S. Brygoo, E. Henry, P. Loubeyre, J. Eggert, M. Koenig, B. Loupias, A. Benuzzi-Mounaix, M. Rabec Le Gloahec, Laser-shock compression of diamond and evidence of a negative-slope melting curve. Nat. Mater. 6, 274 (2007)ADSCrossRefGoogle Scholar
  22. F.P. Bundy, H.T. Hall, H.M. Strong, R.H. Wentorf Jun, Man-made diamonds. Nature 176, 51 (1955)ADSCrossRefGoogle Scholar
  23. F.P. Bundy, Pressure-temperature phase diagram of elemental carbon. Phys. A: Stat. Mech. Appl. 156(1), 169–178 (1989)MathSciNetCrossRefGoogle Scholar
  24. B. Buras, J.S. Olsen, L. Gerward, G. Will, E. Hinze, X-ray energy-dispersive diffractometry using synchrotron radiation. J. Appl. Crystallogr. 10, 431–438 (1977)CrossRefGoogle Scholar
  25. E. Burkel, J. Peisl, B. Dorner, Observation of inelastic X-ray-scattering from phonons. Europhys. Lett. 3(8), 957–961 (1987)ADSCrossRefGoogle Scholar
  26. J.F. Cannon, Behavior of the elements at high pressures. J. Phys. Chem. Ref. Data 3(3), 781–824 (1974)ADSCrossRefGoogle Scholar
  27. R.J. Cernik, W. Clegg, C.R.A. Catlow, G. BushnellWye, J.V. Flaherty, G.N. Greaves, I. Burrows, D.J. Taylor, S.J. Teat, M. Hamichi, A new high-flux chemical and materials crystallography station at the SRS Daresbury. 1. Design, construction and test results. J. Synchrotron Radiat. 4(Part 5), 279–286 (1997)CrossRefGoogle Scholar
  28. J. Chen, Y. Wang, T.S. Duffy, G. Shen, L.P. Dobrzhinetskaya (eds), Advances in High-Pressure Techniques for Geophysical Applications (Elsevier Science, Amsterdam 2005)Google Scholar
  29. F. Coppari, R.F. Smith, J.H. Eggert, J. Wang, J.R. Rygg, A. Lazicki, J.A. Hawreliak, G.W. Collins, T.S. Duffy, Experimental evidence for a phase transition in magnesium oxide at exoplanet pressures. Nat. Geosci. 6, 926 (2013)ADSCrossRefGoogle Scholar
  30. W.A. Crichton, M. Mezouar, Methods and application of the Paris-Edinburgh Press to X-ray diffraction structure solution with large-volume samples at high pressures and temperatures, in J. Chen, Y. Wang, T.S. Duffy, G. Shen, L.F. Dobrzhinetskaya (eds), Advances in High-Pressure Technology for Geophysical Applications (Elsevier, Amsterdam, 2005), pp. 353–369CrossRefGoogle Scholar
  31. A. Dadashev, M.P. Pasternak, G.K. Rozenberg, R.D. Taylor, Applications of perforated diamond anvils for very high-pressure research. Rev. Sci. Instrum. 72(6), 2633–2637 (2001)ADSCrossRefGoogle Scholar
  32. T. d’Almeida, Y.M. Gupta, Real-time X-ray diffraction measurements of the phase transition in KCl shocked along [100]. Phys. Rev. Lett. 85, 330–333 (2000)ADSCrossRefGoogle Scholar
  33. T. d’Almeida, M. Di Michiel, M. Kaiser, T. Buslaps, A. Fanget, Time-resolved x-ray diffraction measurements on CdS shocked along the c axis. J. Appl. Phys. 92(3), 1715–1717 (2002)ADSCrossRefGoogle Scholar
  34. A. Dawson, D.R. Allan, S. Parsons, M. Ruf, Use of a CCD diffractometer in crystal structure determinations at high pressure. J. Appl. Crystallogr. 37(Part 3), 410–416 (2004)CrossRefGoogle Scholar
  35. O. Degtyareva, M.I. McMahon, D.R. Allan, R.J. Nelmes, Structural complexity in Gallium under high pressure: relation to alkali elements. Phys. Rev. Lett. 93, 205502 (2004)ADSCrossRefGoogle Scholar
  36. A. Denoeud, N. Ozaki, A. Benuzzi-Mounaix, H. Uranishi, Y. Kondo, R. Kodama, E. Brambrink, A. Ravasio, M. Bocoum, J.-M. Boudenne, M. Harmand, F. Guyot, S. Mazevet, D. Riley, M. Makita, T. Sano, Y. Sakawa, Y. Inubushi, G. Gregori, M. Koenig, G. Morard, Dynamic X-ray diffraction observation of shocked solid iron up to 170 GPa. Proc. Natl. Acad. Sci. 113(28), 7745–7749 (2016)ADSCrossRefGoogle Scholar
  37. S. Desgreniers, Y.K. Vohra, A.L. Ruoff, Optical-response of very high-density solid oxygen to 132 GPa. J. Phys. Chem. 94(3), 1117–1122 (1990)CrossRefGoogle Scholar
  38. A. Dewaele, P. Loubeyre, M. Mezouar, Equations of state of six metals above 94 GPa. Phys. Rev. B 70(9), 094112 (2004)Google Scholar
  39. A. Dewaele, P. Loubeyre, F. Occelli, O. Marie, M. Mezouar, Toroidal diamond anvil cell for detailed measurements under extreme static pressures. Nat. Commun. 9(1), 2913 (2018)Google Scholar
  40. B. Dorner, E. Burkel, T. Illini, J. Peisl, 1st measurement of a phonon-dispersion curve by inelastic X-ray-scattering. Zeitschrift Fur Physik B-condensed Matter 69(2–3), 179–183 (1987)ADSCrossRefGoogle Scholar
  41. N. Dubrovinskaia, L. Dubrovinsky, N.A. Solopova, A. Abakumov, S. Turner, M. Hanfland, E. Bykova, M. Bykov, C. Prescher, V.B. Prakapenka, S. Petitgirard, I. Chuvashova, B. Gasharova, Y.-L. Mathis, P. Ershov, I. Snigireva, A. Snigirev, Terapascal static pressure generation with ultrahigh yield strength nanodiamond. Sci. Adv. 2(7), E1600341 (2016).  https://doi.org/10.1126/sciadv.1600341 ADSCrossRefGoogle Scholar
  42. L. Dubrovinsky, T. Boffa-Ballaran, K. Glazyrin, A. Kurnosov, D. Frost, M. Merlini, M. Hanfland, V.B. Prakapenka, P. Schouwink, T. Pippinger, N. Dubrovinskaia, Single-crystal X-ray diffraction at megabar pressures and temperatures of thousands of degrees. High Press. Res. 30(4), 620–633 (2010)ADSCrossRefGoogle Scholar
  43. L. Dubrovinsky, N. Dubrovinskaia, V.B. Prakapenka, A.M. Abakumov, Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6 Mbar. Nat. Commun. 3, 1163 (2012)ADSCrossRefGoogle Scholar
  44. T.S. Duffy, Synchrotron facilities and the study of the Earth’s deep interior. Rep. Prog. Phys. 68(8), 1811–1859 (2005)ADSCrossRefGoogle Scholar
  45. G.E. Duvall, R.A. Graham, Phase transitions under shock-wave loading. Rev. Mod. Phys. 49, 523–579 (1977)ADSCrossRefGoogle Scholar
  46. D. Einfeld, Multi-bend Achromat lattices for storage ring light sources. Synchrotron Radiat. News 27(6), 4–7 (2014)CrossRefGoogle Scholar
  47. M.I. Eremets, High Pressure Experimental Methods (Oxford University Press, Oxford, 1996)Google Scholar
  48. M. Eriksson, J.F. van der Veen, C. Quitmann, Diffraction-limited storage rings – a window to the science of tomorrow. J. Synchrotron Radiat. 21(5), 837–842 (2014)CrossRefGoogle Scholar
  49. ESRF, EBS Science Workshops (2016). http://www.esrf.eu/home/events/conferences/2016/ebs-science-workshop.html. Last accessed on 02 July 2018Google Scholar
  50. J.W. Forbes, (2012) Shockwave Compression of Condensed Matter. Springer, HeidelbergCrossRefGoogle Scholar
  51. E. Gerdau, R. Rüffer, H. Winkler, W. Tolksdorf, C.P. Klages, J.P. Hannon, Nuclear Bragg diffraction of synchrotron radiation in yttrium iron garnet. Phys. Rev. Lett. 54, 835–838 (1985)ADSCrossRefGoogle Scholar
  52. A.E. Gleason, C.A. Bolme, H.J. Lee, B. Nagler, E. Galtier, D. Milathianaki, J. Hawreliak, R.G. Kraus, J.H. Eggert, D.E. Fratanduono, G.W. Collins, R. Sandberg, W. Yang, W.L. Mao, Ultrafast visualization of crystallization and grain growth in shock-compressed SiO2. Nat. Commun. 6, 8191 (2015)CrossRefGoogle Scholar
  53. A.E. Gleason, C.A. Bolme, E. Galtier, H.J. Lee, E. Granados, D.H. Dolan, C.T. Seagle, T. Ao, S. Ali, A. Lazicki, D. Swift, P. Celliers, W.L. Mao, Compression freezing kinetics of water to ice VII. Phys. Rev. Lett. 119, 025701 (2017)ADSCrossRefGoogle Scholar
  54. S.H. Glenzer, L.B. Fletcher, E. Galtier, B. Nagler, R. Alonso-Mori, B. Barbrel, S.B. Brown, D.A. Chapman, Z. Chen, C.B. Curry, F. Fiuza, E. Gamboa, M. Gauthier, D.O. Gericke, A. Gleason, S. Goede, E. Granados, P. Heimann, J. Kim, D. Kraus, M.J. MacDonald, A.J. Mackinnon, R. Mishra, A. Ravasio, C. Roedel, P. Sperling, W. Schumaker, Y.Y. Tsui, J. Vorberger, U. Zastrau, A. Fry, W.E. White, J.B. Hasting, H.J. Lee, Matter under extreme conditions experiments at the linac coherent light source. J. Phys. B: Atomic Mol. Opt. Phys. 49(9), 092001 (2016)ADSCrossRefGoogle Scholar
  55. A.F. Goncharov, M. Wong, D. Allen Dalton, J.G.O. Ojwang, V.V. Struzhkin, Z. Konôpkov´a, P. Lazor, Thermal conductivity of argon at high pressures and high temperatures. J. Appl. Phys. 111(11), 112609 (2012)ADSCrossRefGoogle Scholar
  56. M.G. Gorman, R. Briggs, E.E. McBride, A. Higginbotham, B. Arnold, J.H. Eggert, D.E. Fratanduono, E. Galtier, A.E. Lazicki, H.J. Lee, H.P. Liermann, B. Nagler, A. Rothkirch, R.F. Smith, D.C. Swift, G.W. Collins, J.S. Wark, M.I. McMahon, Direct observation of melting in shock-compressed bismuth with femtosecond X-ray diffraction. Phys. Rev. Lett. 115, 095701 (2015)ADSCrossRefGoogle Scholar
  57. E. Gregoryanz, L.F. Lundegaard, M.I. McMahon, C. Guillaume, R.J. Nelmes, M. Mezouar, Structural diversity of sodium. Science 320(5879), 1054–1057 (2008)ADSCrossRefGoogle Scholar
  58. C.L. Guillaume, E. Gregoryanz, O. Degtyareva, M.I. McMahon, M. Hanfland, S. Evans, M. Guthrie, S.V. Sinogeikin, H.-K. Mao, Cold melting and solid structures of dense lithium. Nat. Phys. 7(3), 211–214 (2011)CrossRefGoogle Scholar
  59. T. Guillot, The interiors of giant planets: models and outstanding questions. Ann. Rev. Earth Planet. Sci. 33(1), 493–530 (2005)ADSMathSciNetCrossRefGoogle Scholar
  60. M. Hanfland, K. Syassen, J. Kohler, Pressure-volume relationship of Ta. J. Appl. Phys. 91(7), 4143–4148 (2002)ADSCrossRefGoogle Scholar
  61. R.M. Hazen, The New Alchemists: Breaking Through the Barriers of High Pressure (Times Books, New York, 1994)Google Scholar
  62. R.M. Haze, The Diamond Makers (Cambridge University Press, New York, 1999)Google Scholar
  63. R.M. Hazen, L.W. Finger, Comparative Crystal Chemistry: Temperature, Pressure, Composition and the Variation of Crystal Structure (Wiley, London, 1982)Google Scholar
  64. C. Hejny, M.I. McMahon, Large structural modulations in incommensurate Te-III and Se-IV. Phys. Rev. Lett. 91, 215502 (2003)ADSCrossRefGoogle Scholar
  65. R.J. Hemley, N.W. Ashcroft, The revealing role of pressure in the condensed matter sciences. Phys. Today 51(8), 26–32 (1998)CrossRefGoogle Scholar
  66. W.B. Holzapfel, N.I. Isaacs, High-Pressure Techniques in Chemistry and Physics (Oxford University Press, Oxford 1997)Google Scholar
  67. X. Hong, M. Newville, V.B. Prakapenka, M.L. Rivers, S.R. Sutton, High quality x-ray absorption spectroscopy measurements with long energy range at high pressure using diamond anvil cell. Rev. Sci. Instrum. 80(7), 073908 (2009)ADSCrossRefGoogle Scholar
  68. X. Hong, M. Newville, T.S. Duffy, High-pressure X-ray absorption fine structure in the diamond anvil cell and its applications in geological materials. J. Phys. Conf. Ser. 430(1), 012120 (2013)Google Scholar
  69. J. Hu, K. Ichiyanagi, T. Doki, A. Goto, T. Eda, K. Norimatsu, S. Harada, D. Horiuchi, Y. Kabasawa, S. Hayashi, S.-I. Uozumi, N. Kawai, S. Nozawa, T. Sato, S.-I. Adachi, K.G. Nakamura, Complex structural dynamics of bismuth under laser-driven compression. Appl. Phys. Lett. 103(16), 161904 (2013)ADSCrossRefGoogle Scholar
  70. K. Ichiyanagi, G.K. Nakamura, Structural dynamics of materials under shock compression investigated with synchrotron radiation. Metals 6(1), 17 (2016)CrossRefGoogle Scholar
  71. K. Ichiyanagi, S.-I. Adachi, S. Nozawa, Y. Hironaka, K.G. Nakamura, T. Sato, A. Tomita, S.-Y. Koshihara, Shock-induced lattice deformation of CdS single crystal by nanosecond time-resolved Laue diffraction. Appl. Phys. Lett. 91(23), 231918 (2007)ADSCrossRefGoogle Scholar
  72. R. Ingalls, G.A. Garcia, E.A. Stern, X-ray absorption at high pressure. Phys. Rev. Lett. 40, 334–336 (1978)ADSCrossRefGoogle Scholar
  73. R. Ingalls, E.D. Crozier, J.E. Whitmore, A.J. Seary, J.M. Tranquada, Extended x-ray absorption fine structure of NaBr and Ge at high pressure. J. Appl. Phys. 51(6), 3158–3163 (1980)ADSCrossRefGoogle Scholar
  74. R. Ingalls, J.M. Tranquada, J.E. Whitmore, E.D. Crozier, XANES at high-pressure phase transitions, in EXAFS and Near Edge Structure, ed. by A. Bianconi, L. Incoccia, S. Stipcich (Springer, Berlin/Heidelberg, 1983), pp. 154–156CrossRefGoogle Scholar
  75. K. Inoue, T. Asada, Cubic Anvil X-ray diffraction press up to 100 kbar and 1000C. Jpn. J. Appl. Phys. 12(11), 1786 (1973)ADSCrossRefGoogle Scholar
  76. T. Irifune, A. Kurio, S. Sakamoto, T. Inoue, H. Sumiya, Ultrahard polycrystalline diamond from graphite. Nature 421, 599 (2003)ADSCrossRefGoogle Scholar
  77. N. Ishimatsu, K. Matsumoto, H. Maruyama, N. Kawamura, M. Mizumaki, H. Sumiya, T. Irifune, Glitch-free X-ray absorption spectrum under high pressure obtained using nano-polycrystalline diamond anvils. J. Synchrotron Radiat. 19(PMC3621395) 768–772 (2012)CrossRefGoogle Scholar
  78. J.P. Itie, A. Polian, G. Calas, J. Petiau, A. Fontaine, H. Tolentino, Pressure-induced coordination changes in crystalline and vitreous GeO2. Phys. Rev. Lett. 63, 398–401 (1989)ADSCrossRefGoogle Scholar
  79. J.P. Itie, F. Baudelet, A. Congeduti, B. Couzinet, F. Farges, A. Polian, High pressure x-ray absorption spectroscopy at lower energy in the dispersive mode: application to Ce and FePO 4. J. Phys. Condens. Matter 17(11), S883 (2005)ADSGoogle Scholar
  80. J.C. Jamieson, A.W. Lawson, N.D. Nachtrieb, New device for obtaining x-ray diffraction patterns from substances exposed to high pressure. Rev. Sci. Instrum. 30(11), 1016–1019 (1959)ADSCrossRefGoogle Scholar
  81. A. Jayaraman, Diamond anvil cell and high-pressure physical investigations. Rev. Modern Phys. 55(1), 65–108 (1983)ADSMathSciNetCrossRefGoogle Scholar
  82. A. Jayaraman, Ultrahigh pressures. Rev. Sci. Instrum. 57(6), 1013–1031 (1986)ADSCrossRefGoogle Scholar
  83. Z. Jenei, O’E.F. Bannon, S.T. Weir, H. Cynn, M.J. Lipp, W.J. Evans, Single crystal toroidal diamond anvils for high pressure experiments beyond 5 megabar. Nat. Commun. 9(1), 3563 (2018)Google Scholar
  84. D.H. Kalantar, J.F. Belak, G.W. Collins, J.D. Colvin, H.M. Davies, J.H. Eggert, T.C. Germann, J. Hawreliak, B.L. Holian, K. Kadau, P.S. Lomdahl, H.E. Lorenzana, M.A. Meyers, K. Rosolankova, M.S. Schneider, J. Sheppard, J.S. Stölken, J.S. Wark, Direct observation of the α − 𝜖 transition in shock-compressed iron via nanosecond X-ray diffraction. Phys. Rev. Lett. 95, 075502 (2005)Google Scholar
  85. A. Katrusiak, High-pressure single-crystal diffractometry with laboratory x-ray sources – high-pressure structural determinations at home laboratories, in High-Pressure Crystallography, ed. by A. Katrusiak, P. McMillan. NATO Science Series, Series II: Mathematics, Physics and Chemistry, vol. 140. PO Box 17, 3300 AA Dordrecht: Springer, for NATO. NATO Advanced Research Workshop on High-Pressure Crystallography, Erice, 04–15 June 2003 (2004), pp. 57–68CrossRefGoogle Scholar
  86. A. Katrusiak, High-pressure crystallography. Acta Crystallogr. Sect. A, 64(Part 1), 135–148 (2008)ADSCrossRefGoogle Scholar
  87. N. Kawai, S. Endo, Generation of ultrahigh hydrostatic pressures by a split sphere apparatus. Rev. Sci. Instrum. 41(8), 1178 (1970)Google Scholar
  88. L.G. Khvostantsev, L.F. Vereshchagin, A.P. Novikov, Device of toroid type for high pressure generation. High Temp. High Press. 9, 637 (1977)Google Scholar
  89. L.G. Khvostantsev, V.N. Slesarev, V.V. Brazhkin, Toroid type high-pressure device: history and prospects. High Press. Res. 24(3), 371–383 (2004)ADSCrossRefGoogle Scholar
  90. S. Klotz, J.M. Besson, G. Hamel, R.J. Nelmes, J.S. Loveday, W.G. Marshall, R.M. Wilson, Neutron powder diffraction at pressures beyond 25 GPa. Appl. Phys. Lett. 66(14), 1735–1737 (1995)ADSCrossRefGoogle Scholar
  91. S. Klotz, G. Hamel, J. Frelat, A new type of compact large-capacity press for neutron and X-ray scattering. High Press. Res. 24(1), 219–223 (2004). Meeting on Matter Under Extreme Conditions, Paris, 16 May 2003ADSCrossRefGoogle Scholar
  92. S. Klotz, J.-C. Chervin, P. Munsch, G. Le Marchand, Hydrostatic limits of 11 pressure transmitting media. J. Phys.-Condens. Matter 42(7), 075413 (2009). https://doi.org/10.1088/0022-3727/42/7/075413 ADSCrossRefGoogle Scholar
  93. Y. Kono, C. Park, C. Kenney-Benson, G. Shen, Y. Wang, Toward comprehensive studies of liquids at high pressures and high temperatures: combined structure, elastic wave velocity, and viscosity measurements in the Paris-Edinburgh cell. Phys. Earth Planet. Interiors 228, 269–280 (2014). High-Pressure Research in Earth Science: Crust, Mantle, and Core.ADSCrossRefGoogle Scholar
  94. D. Kraus, J. Vorberger, A. Pak, N.J. Hartley, L.B. Fletcher, S. Frydrych, E. Galtier, E.J. Gamboa, D.O. Gericke, S.H. Glenzer, E. Granados, M.J. MacDonald, A.J. MacKinnon, E.E. McBride, I. Nam, P. Neumayer, M. Roth, A.M. Saunders, A.K. Schuster, P. Sun, T. van Driel, T. Döppner, R.W. Falcone, Formation of diamonds in laser-compressed hydrocarbons at planetary interior conditions. Nat. Astron. 1(9), 606–611 (2017)ADSCrossRefGoogle Scholar
  95. T. Kunimoto, T. Irifune, Pressure generation to 125 GPa using a 6-8-2 type multianvil apparatus with nano-polycrystalline diamond anvils. J. Phys. Conf. Ser. 215(1), 012190 (2010)Google Scholar
  96. M. Kumazawa, Theory of generation of very high static pressures by an external force. High Temp.-High Press. 5, 599–619 (1973)Google Scholar
  97. Y. Le Godec, G. Hamel, V.L. Solozhenko, D. Martinez-Garcia, J. Philippe, T. Hammouda, M. Mezouar, W.A. Crichton, G. Morard, S. Klotz, Portable multi-anvil device for in situ angle-dispersive synchrotron diffraction measurements at high pressure and temperature. J. Synchrotron Radiat. 16(Part 4), 513–523 (2009)Google Scholar
  98. R. LeToullec, J.P. Pinceaux, P. Loubeyre, The membrane diamond anvil cell: a new device for generating continuous pressure and temperature variations. High Press. Res. 1(1), 77–90 (1988)ADSCrossRefGoogle Scholar
  99. B. Li, C. Ji, W. Yang, J. Wang, K. Yang, R. Xu, W. Liu, Z. Cai, J. Chen, H.-K. Mao, Diamond anvil cell behavior up to 4 Mbar. Proc. Natl. Acad. Sci. (2018)CrossRefGoogle Scholar
  100. Q. Liang, C.-S. Yan, Y. Meng, J. Lai, S. Krasnicki, H.K. Mao, R.J. Hemley, Recent advances in high-growth rate single-crystal CVD diamond. Diamond Relat. Mater. 18(5–8, Sp. Iss. SI), 698–703 (2009). 19th European Conference on Diamond, Diamond-Like Materials, Carbon Nanotubes, Nitrides and Silicon Garbide, Sitges, 07–11 Sept 2008.Google Scholar
  101. R.C. Liebermann, Multi-anvil, high pressure apparatus: a half-century of development and progress. High Press. Res. 31(4), 493–532 (2011)ADSCrossRefGoogle Scholar
  102. H.P. Liermann, Conceptual Design Report for Diamond Anvil Cell Setup (DAC) at the HED Instrument of the European XFEL (2016). http://photon-science.desy.de/sites/site_photonscience/ content/e58/e281572/e281621/e282672000/e282685/e282725/DAC_Conceptual_Design_Rep- ort_Ver_2_5_eng.pdf. Last accessed on 02 July 2018.
  103. H.-P. Liermann, Z. Konôpkov´a, W. Morgenroth, K. Glazyrin, J. Bednarčik, E.E. McBride, S. Petitgirard, J.T. Delitz, M. Wendt, Y. Bican, A. Ehnes, I. Schwark, A. Rothkirch, M. Tischer, J. Heuer, H. Schulte-Schrepping, T. Kracht, H. Franz, The extreme conditions beamline P02.2 and the extreme conditions science infrastructure at PETRA III. J. Synchrotron Radiat. 22(PMC4489534), 908–924 (2015)CrossRefGoogle Scholar
  104. K.-D. Liss, T. d’Almeida, M. Kaiser, R. Hock, A. Magerl, J.F. Eloy, Time-resolved x-ray diffraction study of laser-induced shock and acoustic waves in single crystalline silicon. J. Appl. Phys. 106(4), 044914 (2009)ADSCrossRefGoogle Scholar
  105. L.G. Liu, W.A. Bassett, Elements, Oxides, and Silicates: High Pressure Phases with Implications for the Earth’s Interior. Oxford Monographs on Geology and Geophysics (Oxford University Press, New York, 1986)Google Scholar
  106. L.F. Lundegaard, M. Marques, G. Stinton, G.J. Ackland, R.J. Nelmes, M.I. McMahon, Observation of the oP8 crystal structure in potassium at high pressure. Phys. Rev. B 80(2), 020101(R) (2009a).  https://doi.org/10.1103/PhysRevB.80.020101
  107. L.F. Lundegaard, E. Gregoryanz, M.I. McMahon, C. Guillaume, I. Loa, R.J. Nelmes, Single-crystal studies of incommensurate Na to 1.5 Mbar. Phys. Rev. B, 79(6), 064105 (2009b).  https://doi.org/10.1103/PhysRevB.79.064105
  108. Y. Ma, M. Eremets, A.R. Oganov, Y. Xie, I. Trojan, S. Medvedev, A.O. Lyakhov, M. Valle, V. Prakapenka, Transparent dense sodium. Nature 458(7235), 182–U3 (2009)ADSCrossRefGoogle Scholar
  109. M. Malinowski, A diamond-anvil high-pressure-cell for x-ray-diffraction on a single-crystal. J. Appl. Crystallogr. 20(Part 5), 379–382 (1987)CrossRefGoogle Scholar
  110. H.K. Mao, P.M. Bell, High-pressure physics – sustained static generation of 1.36 to 1.72 megabars. Science 200(4346), 1145–1147 (1978)ADSCrossRefGoogle Scholar
  111. H.K. Mao, R.J. Hemley, L.C. Chen, J.F. Shu, L.W. Finger, Y. Wu, X-ray diffraction to 302 Gigapascals: high-pressure crystal structure of cesium iodide. Science 246(4930), 649–651 (1989)ADSCrossRefGoogle Scholar
  112. N. Marques De Souza Neto, Extreme condition beamline at SIRIUS to study rare earths and actinides. Acta Crystallogr. Sect. A 73(a2), C817 (2017)Google Scholar
  113. L.P. Martin, D. Orlikowski, J.H. Nguyen, Fabrication and characterization of graded impedance impactors for gas gun experiments from tape cast metal powders. Mater. Sci. Eng. A 427(1), 83–91 (2006)CrossRefGoogle Scholar
  114. K. Matsumoto, H. Maruyama, N. Ishimatsu, N. Kawamura, M. Mizumaki, T. Irifune, H. Sumiya, Noncollinear Spin structure in Fe-Ni Invar alloy probed by magnetic EXAFS at high pressure. J. Phys. Soc. Jpn. 80(2), 023709 (2011)ADSCrossRefGoogle Scholar
  115. H.E. Maynard, J.S. Loveday, S. Klotz, C.L. Bull, T.C. Hansen, High-pressure crystallography of methane: a low-temperature neutron diffraction study in the 1-5GPa range. High Press. Res. 29(1), 125–128 (2009). 46th Annual Meeting of the European-High-Pressure-Research-Group Meeting (EHPRG 46), Valencia, 07–12 Sept 2008ADSCrossRefGoogle Scholar
  116. H.E. Maynard-Casely, C.L. Bull, M. Guthrie, I. Loa, M.I. McMahon, E. Gregoryanz, R.J. Nelmes, J.S. Loveday, The distorted close-packed crystal structure of methane A. J. Chem. Phys. 133(6), 064504 (2010). https://doi.org/10.1063/1.3455889 ADSCrossRefGoogle Scholar
  117. E.E. McBride, K.A. Munro, G.W. Stinton, R.J. Husband, R. Briggs, H.P. Liermann, M.I. McMahon, One-dimensional chain melting in incommensurate potassium. Phys. Rev. B 91(14), 144111 (2015)Google Scholar
  118. M. McMahon, R. Nelmes, Incommensurate crystal structures in the elements at high pressure. Zeitschrift fur Kristallographie 219(11), 742–748 (2004)ADSGoogle Scholar
  119. M.I. McMahon, U. Zastrau, Dynamic Laser Compression Experiments at the HED Instrument of European XFEL (2017). https://www.xfel.eu/sites/sites_custom/site_xfel/content/e35165/e46561/e46886/e46963/e46964/xfel_file61566/TR-2017-001_CDR_HED_DC_eng.pdf. Last accessed on 02 July 2018
  120. M.I. McMahon, R.J. Nelmes, S. Rekhi, Complex Crystal Structure of Cesium-III. Phys. Rev. Lett. 87, 255502 (2001)ADSCrossRefGoogle Scholar
  121. M.I. McMahon, (2014) High-pressure X-ray science on the ultimate storage ring. J. Synchrotron Radiat. 21(5), 1077–1083CrossRefGoogle Scholar
  122. P.F. McMillan, New materials from high-pressure experiments. Nat. Mater. 1(1), 19–25 (2002)ADSCrossRefGoogle Scholar
  123. S. Merkel, M. Gruson, Y. Wang, N. Nishiyama, C.N. Tom´e, Texture and elastic strains in hcp-iron plastically deformed up to 17.5 GPa and 600 K: experiment and model. Model. Simul. Mater. Sci. Eng. 20(2), 024005 (2012)ADSCrossRefGoogle Scholar
  124. L. Merrill, W.A. Bassett, Miniature diamond anvil pressure cell for single-crystal x-ray-diffraction studies. Rev. Sci. Instrum. 45(2), 290–294 (1974)ADSCrossRefGoogle Scholar
  125. J. Meza-Galvez, N. Gomez-Perez, A. Marshall, A.L. Coleman, K. Appel, H.P. Liermann, Z. Konopkova, M.I. McMahon, R.S. McWilliams, (2018) Thermomechanical response of thickly tamped targets and diamond anvil cells under pulsed hard x-ray irradiation. ArXiv e-printsGoogle Scholar
  126. M. Mezouar, T. Le Bihan, H. Libotte, Y. Le Godec, D. Hausermann, Paris-Edinburgh large-volume cell coupled with a fast imaging-plate system for structural investigation at high pressure and high temperature. J. Synchrotron Radiat. 6(6), 1115–1119 (1999)CrossRefGoogle Scholar
  127. M. Mezouar, P. Faure, W. Crichton, N. Rambert, B. Sitaud, S. Bauchau, G. Blattmann, Multichannel collimator for structural investigation of liquids and amorphous materials at high pressures and temperatures. Rev. Sci. Instrum. 73(10), 3570–3574 (2002)ADSCrossRefGoogle Scholar
  128. D. Milathianaki, D.C. Swift, J. Hawreliak, B.S. El-Dasher, J.M. McNaney, H.E. Lorenzana, T. Ditmire, In situ lattice measurement of the bcc phase boundary in Mg on the principal shock Hugoniot. Phys. Rev. B 86(1), 014101 (2012)Google Scholar
  129. R. Miletich, D.R. Allan, W.F. Kuhs, High-pressure single-crystal techniques, in High-temperature and High-pressure Crystal Chemistry. Reviews in Mineralogy & Geochemistr, vol. 41. 1015 Eighteenth St, Nw, Suite 601, Washington, DC 20036-5274 USA: (Mineralogical Soc America, 2000), pp. 445–519ADSCrossRefGoogle Scholar
  130. S. Mobilio, C. Meneghini, Synchrotron radiation in the study of amorphous materials. J. Non-Cryst. Solids 232–234, 25–37 (1998)CrossRefGoogle Scholar
  131. S.A. Moggach, S. Parsons, P.A. Wood, High-pressure polymorphism in amino acids. Crystallogr. Rev. 14(2), 143–183 (2008a)CrossRefGoogle Scholar
  132. S.A. Moggach, D.R. Allan, S. Parsons, J.E. Warren, Incorporation of a new design of backing seat and anvil in a Merrill-Bassett diamond anvil cell. J. Appl. Crystallogr. 41(Part 2), 249–251 (2008b)CrossRefGoogle Scholar
  133. G. Morard, M. Mezouar, N. Rey, R. Poloni, A. Merlen, S. Le Floch, P. Toulemonde, S. Pascarelli, A. San-Miguel, C. Sanloup, G. Fiquet, Optimization of Paris-Edinburgh press cell assemblies for in situ monochromatic X-ray diffraction and X-ray absorption. High Press. Res. 27(2), 223–233 (2007)ADSCrossRefGoogle Scholar
  134. M. Murakami, S.V. Sinogeikin, H. Hellwig, J.D. Bass, J. Li, Sound velocity of MgSiO3 perovskite to Mbar pressure. Earth Planet. Sci. Lett. 256(1), 47–54 (2007)ADSCrossRefGoogle Scholar
  135. B. Nagler, B. Arnold, G. Bouchard, R.F. Boyce, R.M. Boyce, A. Callen, M. Campell, R. Curiel, E. Galtier, J. Garofoli, E. Granados, J. Hastings, G. Hays, P. Heimann, R.W. Lee, D. Milathianaki, L. Plummer, A. Schropp, A. Wallace, M. Welch, W. White, Z. Xing, J. Yin, J. Young, U. Zastrau, H.J. Lee, The matter in extreme conditions instrument at the linac coherent light source. J. Synchrotron Radiat. 22(3), 520–525 (2015)CrossRefGoogle Scholar
  136. B. Nagler, A. Schropp, E.C. Galtier, B. Arnold, S.B. Brown, A. Fry, A. Gleason, E. Granados, A. Hashim, J.B. Hastings, D. Samberg, F. Seiboth, F. Tavella, Z. Xing, H.J. Lee, C.G. Schroer, The phase-contrast imaging instrument at the matter in extreme conditions endstation at LCLS. Rev. Sci. Instrum. 87(10), 103701 (2016)ADSCrossRefGoogle Scholar
  137. Y. Nakamoto, H. Sumiya, T. Matsuoka, K. Shimizu, T. Irifune, Y. Ohishi, Generation of multi-megabar pressure using nano-polycrystalline diamond anvils. Jpn. J. Appl. Phys. Part 2-Lett. Express Lett. 46(25-28), L640–L641 (2007)ADSCrossRefGoogle Scholar
  138. R.J. Nelmes, P.D. Hatton, M.I. McMahon, R.O. Piltz, J. Crain, R.J. Cernik, G. Bushnell-Wye, Angle-dispersive powder-diffraction techniques for crystal structure refinement at high pressure. Rev. Sci. Instrum. 63(1), 1039–1042 (1992)ADSCrossRefGoogle Scholar
  139. R.J. Nelmes, M.I. McMahon, J.S. Loveday, S. Rekhi, Structure of Rb-III: Novel Modul. Stacking Struct. Alkali Metals. Phys. Rev. Lett. 88, 155503 (2002)CrossRefGoogle Scholar
  140. R.J. Nelmes, M.I. McMahon, High-pressure powder diffraction On synchrotron sources. J. Synchrotron Radiat. 1(1), 69–73 (1994)CrossRefGoogle Scholar
  141. J.H. Nguyen, D. Orlikowski, F.H. Streitz, J.A. Moriarty, N.C. Holmes, High-pressure tailored compression: controlled thermodynamic paths. J. Appl. Phys. 100(2), 023508 (2006)ADSCrossRefGoogle Scholar
  142. H. Ohfuji, T. Okada, T. Yagi, H. Sumiya, T. Irifune, Laser heating in nano-polycrystalline diamond anvil cell. J. Phys. Conference Ser. 215(1), 012192 (2010)Google Scholar
  143. O. Ohtaka, H. Arima, H. Fukui, W. Utsumi, Y. Katayama, A. Yoshiasa, Pressure-induced sharp coordination change in liquid Germanate. Phys. Rev. Lett. 92, 155506 (2004)ADSCrossRefGoogle Scholar
  144. M.P. Olbinado, X. Just, J.-L. Gelet, P. Lhuissier, M. Scheel, P. Vagovic, T. Sato, R. Graceffa, J. Schulz, A. Mancuso, J. Morse, A. Rack, MHz frame rate hard X-ray phase-contrast imaging using synchrotron radiation. Opt. Express 25(12), 13857–13871 (2017)ADSCrossRefGoogle Scholar
  145. M.P. Olbinado, V. Cantelli, O. Mathon, S. Pascarelli, J. Grenzer, A. Pelka, M. Roedel, I. Prencipe, A.L. Garcia, U. Helbig, D. Kraus, U. Schramm, T. Cowan, M. Scheel, P. Pradel, T. De Resseguier, A. Rack, Ultra high-speed x-ray imaging of laser-driven shock compression using synchrotron light. J. Phys. D Appl. Phys. 51(5), 055601 (2018)ADSCrossRefGoogle Scholar
  146. A. Onodera, Octahedral-anvil high-pressure devices. High Temp. High Press. 19(01), 579–609 (1987)Google Scholar
  147. S. Osamu, U. Wataru, T. Takashi, K. Takumi, N. Takashi, A New High Pressure and High Temperature Apparatus with Sintered Diamond Anvils for Synchrotron Radiation Use (American Geophysical Union (AGU), 2013), pp. 3–11. https://doi.org/10.1029/GM067p0003 CrossRefGoogle Scholar
  148. J. Osugi, K. Shimizu, K. Inoue, K. Yasunami, A compact cubic anvil high pressure apparatus. Rev. Phys. Chem. Jpn. 34, 1–6 (1964)Google Scholar
  149. W. Paszkowicz, High-pressure powder X-ray diffraction at the turn of the century. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 198(3-4), 142–182 (2002)ADSCrossRefGoogle Scholar
  150. S. Petitgirard, A. Salamat, P. Beck, G. Weck, P. Bouvier, Strategies for in situ laser heating in the diamond anvil cell at an X-ray diffraction beamline. J. Synchrotron Radiat. 21(PMC4861204), 89–96 (2013)CrossRefGoogle Scholar
  151. A. Polian, J.P. Itie, E. Dartyge, A. Fontaine, G. Tourillon, X-ray absorption spectroscopy on solid krypton up to 20 GPa. Phys. Rev. B 39, 3369–3373 (1989)ADSCrossRefGoogle Scholar
  152. P. Raimondi, ESRF-EBS: the extremely brilliant source project. Synchrotron Radiat. News 29(6), 8–15 (2016)CrossRefGoogle Scholar
  153. M.E. Rutherford, D.J. Chapman, J.G. Derrick, J.R.W. Patten, P.A. Bland, A. Rack, G.S. Collins, D.E. Eakins, Probing the early stages of shock-induced chondritic meteorite formation at the mesoscale. Sci. Rep. 7, 45206 (2017)ADSCrossRefGoogle Scholar
  154. J.R. Rygg, J.H. Eggert, A.E. Lazicki, F. Coppari, J.A. Hawreliak, D.G. Hicks, R.F. Smith, C.M. Sorce, T.M. Uphaus, B. Yaakobi, G.W. Collins, Powder diffraction from solids in the terapascal regime. Rev. Sci. Instrum. 83(11), 113904 (2012). https://doi.org/10.1063/1.4766464 ADSCrossRefGoogle Scholar
  155. T. Sakai, T. Yagi, T. Irifune, H. Kadobayashi, N. Hirao, T. Kunimoto, H. Ohfuji, S. Kawaguchi-Imada, Y. Ohishi, S. Tateno, K. Hirose, High pressure generation using double-stage diamond anvil technique: problems and equations of state of rhenium. High Press. Res. 38(2), 107–119 (2018)ADSCrossRefGoogle Scholar
  156. A.V. Sapelkin, S.C. Bayliss, X-ray absorption spectroscopy under high pressures in diamond anvil cells. High Press. Res. 21(6), 315–329 (2001)ADSCrossRefGoogle Scholar
  157. F. Seiboth, L.B. Fletcher, D. McGonegle, S. Anzellini, L.E. Dresselhaus-Cooper, M. Frost, E. Galtier, S. Goede, M. Harmand, H.J. Lee, A.L. Levitan, K. Miyanishi, B. Nagler, I. Nam, N. Ozaki, M. Rödel, A. Schropp, C. Spindloe, P. Sun, J.S. Wark, J. Hastings, S.H. Glenzer, E.E. McBride, Simultaneous 8.2 keV phase-contrast imaging and 24.6 keV X-ray diffraction from shock-compressed matter at the LCLS. Appl. Phys. Lett. 112(22), 221907 (2018)ADSCrossRefGoogle Scholar
  158. G. Shen, H.K. Mao, High-pressure studies with x-rays using diamond anvil cells. Rep. Prog. Phys. 80(1), 016101 (2017)ADSCrossRefGoogle Scholar
  159. G. Shen, Y. Wang, High-pressure apparatus integrated with synchrotron radiation. Rev. Mineral. Geochem. 78(1), 745 (2014)ADSCrossRefGoogle Scholar
  160. O. Shimomura, S. Yamaoka, T. Yagi, M. Wakatsuki, K. Tsuji, H. Kawamura, N. Hamaya, O. Fukuoga, K. Aoki, S. Akimoto, Multi-anvil type X-ray system for synchrotron radiation, in Solid State Physics Under Pressure (Ed. S Minomura), Terra Scientific Publishing Co., Tokyo, pp. 351–356 (1985)Google Scholar
  161. O. Shimomura, K. Takemura, H. Fujihisa, Y. Fujii, Y. Ohishi, T. Kikegawa, Y. Amemiya, T. Matsushita, Application of an imaging plate to high-pressure x-ray study with a diamond anvil cell (invited). Rev. Sci. Instrum. 63(1), 967–973 (1992)ADSCrossRefGoogle Scholar
  162. O. Shimomura, T. Fukamachi, T. Kawamura, S. Hosoya, S. Hunter, A. Bienenstock, EXAFS measurement of high-pressure metallic phase of GaAs by use of a diamond anvil cell. Jpn. J. Appl. Phys. 17S2(Supplement 17-2), 221–223 (1978)CrossRefGoogle Scholar
  163. E.F. Skelton, J. Kirkland, S.B. Qadri, Energy-dispersive measurements of diffracted synchrotron radiation as a function of pressure: applications to phase transitions in KCl and KI. J. Appl. Crystallogr. 15(1), 82–88 (1982)CrossRefGoogle Scholar
  164. T.S. Sokolova, P.I. Dorogokupets, A.M. Dymshits, B.S. Danilov, K.D. Litasov, Microsoft excel spreadsheets for calculation of P-V-T relations and thermodynamic properties from equations of state of MgO, diamond and nine metals as pressure markers in high-pressure and high-temperature experiments. Comput. Geosci. 94, 162–169 (2016)ADSCrossRefGoogle Scholar
  165. H. Sumiya, T. Irifune, A. Kurio, S. Sakamoto, T. Inoue, Microstructure features of polycrystalline diamond synthesized directly from graphite under static high pressure. J. Mater. Sci. 39(2), 445–450 (2004)ADSCrossRefGoogle Scholar
  166. D.C. Swift, J.H. Eggert, D.G. Hicks, S. Hamel, K. Caspersen, E. Schwegler, G.W. Collins, N. Nettelmann, G.J. Ackland, Mass-radius relationships for exoplanets. Astrophys. J. 744(1), 59 (2012)ADSCrossRefGoogle Scholar
  167. K. Syassen, Ruby under pressure. High Press. Res. 28(2), 75–126 (2008)ADSCrossRefGoogle Scholar
  168. Y. Tange, T. Irifune, K.-I. Funakoshi, Pressure generation to 80 GPa using multianvil apparatus with sintered diamond anvils. High Pressure Research, 28(3), 245–254 (2008)ADSCrossRefGoogle Scholar
  169. K. Tohji, Y. Udagawa, Novel approach for structure analysis by x-ray Raman scattering. Phys. Rev. B 36, 9410–9412 (1987)ADSCrossRefGoogle Scholar
  170. K. Tohji, Y. Udagawa, X-ray Raman scattering as a substitute for soft-x-ray extended x-ray-absorption fine structure. Phys. Rev. B 39, 7590–7594 (1989)ADSCrossRefGoogle Scholar
  171. E.Y. Tonkov, E.G. Ponyatovsky, Phase Transformations of Elements Under High High-Pressure (CRC Press, Hoboken, 2004)Google Scholar
  172. R. Torchio, F. Occelli, O. Mathon, A. Sollier, E. Lescoute, L. Videau, T. Vinci, A. Benuzzi-Mounaix, J. Headspith, W. Helsby, S. Bland, D. Eakins, D. Chapman, S. Pascarelli, P. Loubeyre, Probing local and electronic structure in warm dense matter: single pulse synchrotron x-ray absorption spectroscopy on shocked Fe. Sci. Rep. 6, 26402 (2016)ADSCrossRefGoogle Scholar
  173. S.J. Turneaure, N. Sinclair, Y.M. Gupta, Real-time examination of atomistic mechanisms during shock-induced structural transformation in silicon. Phys. Rev. Lett. 117, 045502 (2016)ADSCrossRefGoogle Scholar
  174. S.J. Turneaure, S.M. Sharma, T.J. Volz, J.M. Winey, Y.M. Gupta, Transformation of shock-compressed graphite to hexagonal diamond in nanoseconds. Sci. Adv. 3(10), eaao3561 (2017).  https://doi.org/10.1126/sciadv.aao3561 CrossRefGoogle Scholar
  175. A. Vanvalkenburg, Visual observations of high pressure transitions. Rev. Sci. Instrum. 33(12), 1462 (1962)Google Scholar
  176. Y. Wang, Large volume presses for high-pressure studies using synchrotron radiation, in High-Pressure Crystallography: From Fundamental Phenomena to Technological Applications, ed. by E. Boldyreva, P. Dera. NATO Science for Peace and Security Series B-Physics and Biophysics. Ettore Majorana Ctr Sci Culture. 41st Course of the International School of Crystallography, Ettore Majorana Ctr Sci Culture, Erice, 04–14 June 2009 (2010), pp. 81–96Google Scholar
  177. C.E. Wehrenberg, D. McGonegle, C. Bolme, A. Higginbotham, A. Lazicki, H.J. Lee, B. Nagler, H.-S. Park, B.A. Remington, R.E. Rudd, M. Sliwa, M. Suggit, D. Swift, F. Tavella, L. Zepeda-Ruiz, J.S. Wark, In situ X-ray diffraction measurement of shock-wave-driven twinning and lattice dynamics. Nature 550, 496 (2017)ADSCrossRefGoogle Scholar
  178. C.E. Weir, E.R. Lippincott, A. Vanvalkenburg, E.N. Bunting, Infrared studies in the 1-micron to 15-micron region to 30,000 atmospheres. J. Res. Natl. Bur. Stand. Sect. A Phys. Chem. 63(1), 55–62 (1959)CrossRefGoogle Scholar
  179. E. Wigner, H.B. Huntington, On the possibility of a metallic modification of hydrogen. J. Chem. Phys. 3(12), 764–770 (1935)ADSCrossRefGoogle Scholar
  180. R.E. Winter, M. Cotton, E.J. Harris, D.J. Chapman, D. Eakins, A novel graded density impactor. J. Phys. Conf. Ser. 500(14), 142034 (2014)Google Scholar
  181. C.S. Yoo, N.C. Holmes, M. Ross, D.J. Webb, C. Pike, Shock temperatures and melting of iron at Earth core conditions. Phys. Rev. Lett. 70, 3931–3934 (1993)ADSCrossRefGoogle Scholar
  182. D.A. Young, Phase Diagrams of the Elements (University of California Press, Berkeley, 1991)Google Scholar
  183. C.-S. Zha, S. Krasnicki, Y.-F. Meng, C.-S. Yan, J. Lai, Q. Liang, H.-K. Mao, R.J. Hemley, Composite chemical vapor deposition diamond anvils for high-pressure/high-temperature experiments. High Press. Res. 29(2), 317–324 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.SUPA, School of Physics and Astronomy, and Centre for Science at Extreme ConditionsThe University of EdinburghEdinburghUK

Personalised recommendations