Encyclopedia of Renaissance Philosophy

Living Edition
| Editors: Marco Sgarbi

Abbacus School

  • Jens HøyrupEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-02848-4_1135-1


The abbacus school was a school for artisans’ and merchants’ sons, functioning in northern Italy (thirteenth to sixteenth century). It taught the use of Hindu-Arabic numerals and fundamental commercial arithmetic: the rule of three, monetary and metrological conversions, simple and composite interest, partnership, simple and composite discounting, alloying, the technique of a “single false position,” and, finally, simple area calculation. Topics like the double false position were not part of the curriculum, but they are often dealt with in the abbacus treatises; they probably served to show virtuosity in the competition for employment and pupils.

The manuscripts connected to the abbacus school tradition are of very different character. Some are messy problem collections, some orderly presentations, and a few genuine encyclopediae. Some are produced by mathematically incompetent compilers and some by the best European mathematicians of the age.

Traditionally but mistakenly, the abbacus books are to be derived from Leonardo Fibonacci’s Liber Abbaci and Practica Geometriae. As shown by closer inspection of the texts, they derive from direct inspiration from a broader Mediterranean environment, which had also inspired Fibonacci around 1200. After c. 1330, however, the abbacus tradition had become an autonomous current, no more significantly influenced by the Arabic or Ibero-Provençal world. Influences from Boethian and Euclidean arithmetic, though existing, remained peripheral.

Printing allowed the preparation and spread of the great works of Luca Pacioli, Girolamo Cardano, and Niccolò Tartaglia, as well as more modest books corresponding to the school curriculum. The former group, integrated with the theory of irrationals of Elements X, provided the basis for the renovation of algebra brought about by Viète and Descartes; the latter made possible the spread of abbacus-type teaching of basic applied arithmetic to the whole of Western Europe, where it stayed alive until c. 1960.

This is a preview of subscription content, log in to check access.



Primary Literature

  1. Arrighi, Gino, ed. 1989. Maestro Umbro (sec. XIII), Livero de l’abbecho. (Cod. 2404 della Biblioteca Riccardiana di Firenze). Bollettino della Deputazione di Storia Patria per l’Umbria 86: 5–140.Google Scholar
  2. Bombelli, Rafael. 1572. L’Algebra. Bologna: Giovanni Rossi.Google Scholar
  3. Borghi, Pietro. 1484. Opera de arithmetica. Venezia.Google Scholar
  4. Cardano, Girolamo. 1545. Artis magnae sive de regulis algebraicis, liber unus. Nürnberg: Petreius.Google Scholar
  5. Feliciano da Lazesio, Francesco. 1526. Libro di arithmetica et geometria speculativa et praticale. Venezia.Google Scholar
  6. Fibonacci, Leonardo. 1857. In Liber abbaci, ed. B. Boncompagni. Roma: Tipografia delle Scienze Matematiche e Fisiche.Google Scholar
  7. Fibonacci, Leonardo. 1862. In Practica geometriae ed Opusculi, ed. B. Boncompagni. Roma: Tipografia delle Scienze Matematiche e Fisiche.Google Scholar
  8. Franci, Raffaella. 2015. Un trattato d’abaco pisano della fine del XIII secolo (Ms. L.VI.47 della Biblioteca degl’Intronati di Siena). Bollettino di storia delle scienze matematiche 25: 9–96.Google Scholar
  9. Larte de labbacho. 1478. Treviso.Google Scholar
  10. Pacioli, Luca. 1494. Summa de Arithmetica Geometria Proportioni et Proportionalita. Venezia: Paganino de Paganini.Google Scholar
  11. Stevin, Simon. 1585. L’arithmetique. Leiden: Plantin.Google Scholar
  12. Stifel, Michael. 1544. Arithmetica integra. Nürnberg: Petreius.Google Scholar
  13. Vogel, Kurt, 1977. Ein italienisches Rechenbuch aus dem 14. Jahrhundert (Columbia X 511 A13). (Veröffentlichungen des Deutschen Museums für die Geschichte der Wissenschaften und der Technik. Reihe C, Quellentexte und Übersetzungen, Nr. 33). München.Google Scholar

Secondary Literature

  1. Arrighi, Gino. 1967. Un «programma» di didattica di matematica nella prima metà del Quattrocento (dal Codice 2186 della Biblioteca Riccardiana di Firenze). Atti e memorie dell'Accademia Petrarca di Lettere, Arti e Scienze di Arezzo, Nuova Serie 38 (1965–67): 117–128.Google Scholar
  2. Black, Robert. 2007. Education and society in Florentine Tuscany: Teachers, pupils and schools, c. 1250–1500. Leiden/Boston: Brill.CrossRefGoogle Scholar
  3. Bonaini, F. 1857. Memoria unica sincrona di Leonardo Fibonacci, novamente scoperta. Giornale Storico degli Archivi toscani 1: 239–246.Google Scholar
  4. van Egmond, Warren. 1980. Practical mathematics in the Italian renaissance: A catalog of Italian Abbacus manuscripts and printed books to 1600. Firenze: Istituto e Museo di Storia della Scienza.Google Scholar
  5. Giusti, Enrico. 1991. L’algebra nel trattato d’abaco di Piero della Francesca: osservazioni e congetture. Bollettino di Storia delle Scienze mathematiche 11: 55–83.Google Scholar
  6. Goldthwaite, Richard A. 1972. Schools and teachers of commercial arithmetic in renaissance Florence. Journal of European Economic History 1: 418–433.Google Scholar
  7. Høyrup, Jens. 2005. Leonardo Fibonacci and Abbaco culture: A proposal to invert the roles. Revue d’Histoire des Mathématiques 11: 23–56.Google Scholar
  8. Høyrup, Jens. 2007. Jacopo da Firenze's Tractatus Algorismi and early Italian Abbacus culture. Basel: Birkhäuser.Google Scholar
  9. Høyrup, Jens. 2009. What did the Abbacus teachers aim at when they (sometimes) ended up doing mathematics? An investigation of the incentives and norms of a distinct mathematical practice. In New perspectives on mathematical practices: Essays in philosophy and history of mathematics, ed. Bart van Kerkhove, 47–75. Singapore: World Scientific.Google Scholar
  10. Høyrup, Jens. 2010. Hesitating progress – The slow development toward algebraic symbolization in abbacus- and related manuscripts, c. 1300 to c. 1550. In Philosophical aspects of symbolic reasoning in early modern mathematics, ed. Albrecht Heeffer and Maarten Van Dyck, 3–56. London: College Publications.Google Scholar
  11. Høyrup, Jens. 2012. Sanskrit-Prakrit interaction in elementary mathematics as reflected in Arabic and Italian formulations of the rule of three – and something more on the rule elsewhere. Gaṇita Bhāratī 34: 144–172.Google Scholar
  12. Stedall, Jacqueline. 2010. From Cardano’s great art to Lagrange’s reflections: Filling a gap in the history of algebra. Zürich: European Mathematical Society.Google Scholar
  13. Travaini, Lucia. 2003. Monete, mercanti e matematica. Le monete medievali nei trattati di aritmetica e nei libri di mercatura. Roma: Jouvence.Google Scholar
  14. Ulivi, Elisabetta. 2002. Scuole e maestri d’abaco in Italia tra Medioevo e Rinascimento. In Un ponte sul mediterraneo: Leonardo Pisano, la scienza araba e la rinascita della matematica in Occidente, ed. Enrico Giusti, 121–159. Firenze: Edizioni Polistampa.Google Scholar
  15. Ulivi, Elisabetta. 2011. Su Leonardo Fibonacci e sui maestri d’abaco pisani dei secoli XIII–XV. Bollettino di Storia delle Scienze Matematiche 31: 247–286.Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Section for Philosophy and Science StudiesRoskilde UniversityRoskildeDenmark

Section editors and affiliations

  • Matteo Valleriani
    • 1
  1. 1.Max Planck Institute for the History of ScienceBerlinGermany