Bioactive Compounds from Gac (Momordica cochinchinensis Lour. Spreng)

  • Tien HuynhEmail author
  • Minh H. Nguyen
Reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)


Cucurbits (gourds and cucumbers) are one of the most economically important plant families for food consumption globally. One specific representative, Momordica cochinchinensis, is geographically restricted to tropical Asia and contains the highest levels of carotenoids of all the known fruits and vegetables and relatively underutilized, with only the aril from the fruit used in private homesteads as well as in foods and beverages. This chapter highlights the bioactive compounds from the fruit ranging from small phytochemicals to larger proteins with diverse functions for improved health. The potentials and recommendations for future development in the nutraceutical and pharmaceutical industry are discussed.


Bioactivity Gac Medicinal plants Momordica cochinchinensis Phytochemicals 


  1. 1.
    Britannica E (2015) List of plants in the family Cucurbitaceae, vol 1. Encyclopaedia Britannica Inc., Edinburg, p 1 (online)Google Scholar
  2. 2.
    Lim TK (2012) Edible medicinal and non-medicinal plants. Springer, Dordrecht, pp 1–1110CrossRefGoogle Scholar
  3. 3.
    Wimalasiri D, Piva T, Urban S, Huynh T (2015) Morphological and genetic diversity of Momordica cochinchinensis (Cucurbitaceae) in Vietnam and Thailand. Genet Resour Crop Ev 63:1–15Google Scholar
  4. 4.
    Joseph JK, Roy YC, Krishnaraj MV, Asokan NR, Deepu M, Latha M, Bhat KV, Bharathi LK (2018) A new subspecies of Momordica cochinchinensis (Cucurbitaceae) from Andaman Islands, India. Genet Resour Crop Ev 65(1):103–112CrossRefGoogle Scholar
  5. 5.
    Bootprom N, Songsri P, Suriharn B, Chareonsap P, Sanitchon J, Lertrat K (2012) Molecular diversity among selected Momordica cochinchinensis (Lour.) Spreng accessions using RAPD markers. SABRAO J Breed Genet 44(2):406–104Google Scholar
  6. 6.
    Pham TD, Vo TTH, Van B, Bui TM, Bui TC (2017) Genetic diversity of gac 'Momordica cochinchinensis'(Lour.) Spreng accessions collected from Mekong delta of Vietnam revealed by RAPD markers. Aust J Crop Sci 11(2):206–211CrossRefGoogle Scholar
  7. 7.
    Le HT, Nguyen TA (2019) Genetic characterization of Gac (Momordica cochinchinensis) accessions in southern Vietnam by ISSR markers. Biodiversitas J Bio Div 20(2):387–392CrossRefGoogle Scholar
  8. 8.
    Wimalasiri D, Brkljača R, Piva TJ, Urban S, Huynh T (2017) Comparative analysis of carotenoid content in Momordica cochinchinensis (Cucurbitaceae) collected from Australia, Thailand and Vietnam. J Food Sci Technol 54(9):2814–2824PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Wimalasiri D, Piva T, Huynh T (2016) Diversity in nutrition and bioactivity of Momordica cochinchinensis. Int J Adv Sci Eng Inf Tech 6(3):378–380CrossRefGoogle Scholar
  10. 10.
    Lan HY, Zhao B, Shen YL, Li XQ, Wang SJ, Zhang LJ, Zhang H (2019) Phytochemistry, pharmacological activities, toxicity and clinical application of Momordica cochinchinensis. Curr Pharm Design 25(6):715–728CrossRefGoogle Scholar
  11. 11.
    Nantachit K, Tuchinda P (2009) Antimicrobial activity of hexane and dichloromethane extracts from Momordica cochinchinensis (Lour.) Spreng leaves. Thai J Pharm Sci 4(1):15–20Google Scholar
  12. 12.
    Mukherjee A, Sarkar N, Barik A (2014) Long-chain free fatty acids from Momordica cochinchinensis leaves as attractants to its insect pest, Aulacophora foveicollis Lucas (Coleoptera: Chrysomelidae). J Asia Pac Entomol 17(3):229–234CrossRefGoogle Scholar
  13. 13.
    Mukherjee A, Sarkar N, Barik A (2015) Leaf surface n-alkanes of Momordica cochinchinensis Spreng as short-range attractants for its insect pest, Aulacophora foveicollis Lucas (Coleoptera: Chrysomelidae). Allelopath J 36(1):109–122Google Scholar
  14. 14.
    Mukherjee A, Sarkar N, Barik A (2015) Momordica cochinchinensis (Cucurbitaceae) leaf volatiles: semiochemicals for host location by the insect pest, Aulacophora foveicollis (Coleoptera: Chrysomelidae). Chemoecology 25(2):93–104CrossRefGoogle Scholar
  15. 15.
    Jackson M, Gilding E, Shafee T, Harris K, Kaas Q, Poon S, Yap K, Jia H, Guarino R, Chan L (2018) Molecular basis for the production of cyclic peptides by plant asparaginyl endopeptidases. Nat Commun 9(1):2411–2424PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Weidmann J, Craik DJ (2016) Discovery, structure, function, and applications of cyclotides: circular proteins from plants. J Exp Bot 67(16):4801–4812PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Mukherjee A, Barik A (2016) Long-chain primary alcohols in Momordica cochinchinensis Spreng leaf surface waxes. Bot Lett 163(1):61–66Google Scholar
  18. 18.
    Mukherjee A, Karmakar A, Barik A (2017) Bionomics of Momordica cochinchinensis fed Aulacophora foveicollis (Coleoptera: Chrysomelidae). Proc Zool Soc 70(1):81–87CrossRefGoogle Scholar
  19. 19.
    Tien PG, Kayama F, Konishi F, Tamemoto H, Kasono K, Hung NT, Kuroki M, Ishikawa SE, Van CN, Kawakami M (2005) Inhibition of tumor growth and angiogenesis by water extract of Gac fruit (Momordica cochinchinensis Spreng). Int J Oncol 26(4):881–889PubMedPubMedCentralGoogle Scholar
  20. 20.
    Kubola J, Siriamornpun S (2011) Phytochemicals and antioxidant activity of different fruit fractions (peel, pulp, aril and seed) of Thai gac (Momordica cochinchinensis Spreng). Food Chem 127(3):1138–1145PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Tran TH, Nguyen MH, Zabaras D, Vu LTT (2008) Process development of Gac powder by using different enzymes and drying techniques. J Food Eng 85(3):359–365CrossRefGoogle Scholar
  22. 22.
    Kha TC, Phan-Tai H, Nguyen MH (2014) Effects of pre-treatments on the yield and carotenoid content of Gac oil using supercritical carbon dioxide extraction. J Food Eng 120:44–49CrossRefGoogle Scholar
  23. 23.
    Vuong LT, King JC (2003) A method of preserving and testing the acceptability of gac fruit oil, a good source of beta-carotene and essential fatty acids. Food Nutr Bull 24(2):224–230PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Vuong LT, Franke AA, Custer LJ, Murphy SP (2006) Momordica cochinchinensis Spreng. (gac) fruit carotenoids reevaluated. J Food Compos Anal 19(6–7):664–668CrossRefGoogle Scholar
  25. 25.
    Auisakchaiyoung T, Rojanakorn T (2015) Effect of foam-mat drying conditions on quality of dried Gac fruit (Momordica cochinchinensis) aril. Int Food Res J 22(5):2025–2031Google Scholar
  26. 26.
    Petchsak P, Sripanidkulchai B (2015) Momordica cochinchinensis aril extract induced apoptosis in human MCF-7 breast cancer cells. Asian Pac J Cancer P 16(13):5507–5513CrossRefGoogle Scholar
  27. 27.
    Aoki H, Kieu NTM, Kuze N, Tomisaka K, Chuyen NV (2002) Carotenoid pigments in GAC fruit (Momordica cochinchinensis SPRENG). Biosci Biotechnol Biochem 66:2479–2482PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Phan TH, Wache Y (2014) Isomerization and increase in the antioxidant properties of lycopene from Momordica cochinchinensis (gac) by moderate heat treatment with UV-vis spectra as a marker. Food Chem 156:58–63CrossRefGoogle Scholar
  29. 29.
    Tinrat S (2014) Comparison of antioxidant and antimicrobial activities of unripe and ripe fruit extracts of Momordica cochinchinensis spreng (gac fruit). Int J Pharm Sci Rev Res 28(1):75–82Google Scholar
  30. 30.
    Tinrat S, Akkarachaneeyakorn S, Singhapol C (2014) Evaluation of antioxidant and antimicrobial activities of Momordica cochinchinensis spreng (Gac fruit) ethanolic extract. Int J Pharm Sci Res 5(8):3163–3169Google Scholar
  31. 31.
    Win S, Buanong M, Kanlayanarat S, Wongs AC (2015) Response of gac fruit (Momordica cochinchinensis Spreng) to postharvest treatments with storage temperature and 1-MCP. Int Food Res J 22(1):178–189Google Scholar
  32. 32.
    Sukhorum W, Sampannang A, Sripanidkulchai B, Iamsaard S (2016) Momordica cochinchinensis (L.) Spreng. Aril extract prevents adverse reproductive parameters of male rats induced with valproic acid. Int. J. Morphology 34(3):870–876CrossRefGoogle Scholar
  33. 33.
    Iamsaard S, Sukhorum W, Sampannang A, Sripanidkulchai B (2017) Protective effect of Momordica cochinchinensis (L.) Spreng aril extract on essential testicular markers in rats induced with valproic acid. Int J Morphol 35(3):992–999CrossRefGoogle Scholar
  34. 34.
    Sampannang A, Arun S, Sukhorum W, Burawat J, Nualkaew S, Maneenin C, Sripanidkulchai B, Iamsaard S (2017) Antioxidant and hypoglycemic effects of Momordica cochinchinensis Spreng (Gac) aril extract on reproductive damages in streptozotocin (STZ)-induced hyperglycemia mice. Int J Morphol 35(2):667–675CrossRefGoogle Scholar
  35. 35.
    Burke DS, Smidt CR, Vuong LT (2005) Momordica conchinchinensis, Rosa roxburghii, wolfberry, and sea buckthorn- highly nutritional fruits supported by tradition and science. Curr Top Nutraceutical Res 3(4):259–266Google Scholar
  36. 36.
    Vuong LT (1998) Xoi Gac, a rice preparation containing beta-carotene from Momordica cochinchinensis Spreng (gac), for the prevention of vitamin A deficiency of children in northern Vietnam, University of California, Davis, 119Google Scholar
  37. 37.
    Vuong LT (2000) Underutilized β-carotene-rich crops of Vietnam. Food Nutr Bull 21(2):173–181CrossRefGoogle Scholar
  38. 38.
    Vuong LT, Dueker SR, Murphy SP (2002) Plasma beta-carotene and retinol concentrations of children increase after a 30-d supplementation with the fruit Momordica cochinchinensis (gac). Am J Clin Nutr 75(5):872–879CrossRefGoogle Scholar
  39. 39.
    Chuyen HV, Roach PD, Golding JB, Parks SE, Nguyen MH (2016) Effects of four different drying methods on the carotenoid composition and antioxidant capacity of dried Gac peel. J Sci Food Agric 97(5):1656–1662PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Chuyen HV, Tran XT, Nguyen MH, Roach PD, Parks SE, Golding JB (2017) Yield of carotenoids, phenolic compounds and antioxidant capacity of extracts from Gac peel as affected by different solvents and extraction conditions. J Adv Agric Technol 4(1):87–91Google Scholar
  41. 41.
    Parashar S, Sharma H, Garg M (2014) Antimicrobial and antioxidant activities of fruits and vegetable peels: a review. J Pharmacogn Phytochem 3(1):160–164Google Scholar
  42. 42.
    Trirattanapikul W, Phoungchandang S (2016) Influence of different drying methods on drying characteristics, carotenoids, chemical and physical properties of gac fruit pulp (Momordica cochinchinensis L.). Int J Food Eng 12(4):395–409CrossRefGoogle Scholar
  43. 43.
    Triteeradej N, Siritientong T, Tongyonk L (2016) Mutagenicity and antimutagenicity of water extracts from Gac fruit (Momordica cochinchinensis Spreng). J Health Res 30(6):387–392Google Scholar
  44. 44.
    Chuethong J, Oda K, Sakurai H, Saiki I, Leelamanit W (2007) Cochinin B, a novel ribosome-inactivating protein from the seeds of Momordica cochinchinensis. Biol Pharm Bull 30(3):428–432PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Huang B, Ng TB, Fong WP, Wan CC, Yeung HW (1999) Isolation of a trypsin inhibitor with deletion of N-terminal pentapeptide from the seeds of Momordica cochinchinensis, the Chinese drug mubiezhi. Int J Biochem Cell Biol 31(6):707–715PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Wong RC, Fong WP, Ng TB (2004) Multiple trypsin inhibitors from Momordica cochinchinensis seeds, the Chinese drug mubiezhi. Peptides 25(2):163–169PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Mahatmanto T, Poth AG, Mylne JS, Craik DJ (2014) A comparative study of extraction methods reveals preferred solvents for cystine knot peptide isolation from Momordica cochinchinensis seeds. Fitoterapia 95:22–33PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Xiao C, Hu S, Rajput ZI (2007) Adjuvant effect of an extract from Cochinchina momordica seeds on the immune responses to ovalbumin in mice. Front Agric China 1(1):90–95CrossRefGoogle Scholar
  49. 49.
    Song X, Hu S (2009) Adjuvant activities of saponins from traditional Chinese medicinal herbs. Vaccine 27(36):4883–4890PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Chan LY, Wang CKL, Major JM, Greenwood KP, Lewis RJ, Craik DJ, Daly NL (2009) Isolation and characterization of peptides from Momordica cochinchinensis seeds. J Nat 72(8):1453–1458CrossRefGoogle Scholar
  51. 51.
    Bolognesi A, Barbieri L, Carnicelli D, Abbondanza A, Cenini P, Falasca AI, Dinota A, Stirpe F (1989) Purification and properties of a new ribosome-inactivation protein with RNA N-glycosidase activity suitable for immunotoxin preparation from the seeds of Momordica cochinchinensis. Biochim Biophys Acta 993(2–3):287–292PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Zhao LM, Han LN, Ren FZ, Chen SH, Liu LH, Wang MX, Sang MX, Shan BE (2012) An ester extract of Cochinchina momordica seeds induces differentiation of melanoma B16 F1 cells via MAPKs signaling. Asian Pac J Cancer P 13(8):3795–3802CrossRefGoogle Scholar
  53. 53.
    Yu JS, Roh HS, Lee S, Jung K, Baek KH, Kim KH (2017) Antiproliferative effect of Momordica cochinchinensis seeds on human lung cancer cells and isolation of the major constituents. Rev Bras Farmacogn 27(3):329–333CrossRefGoogle Scholar
  54. 54.
    Fan R, Cheng RR, Zhu HT, Wang D, Yang CR, Xu M, Zhang YJ (2016) Two new oleanane-type triterpenoids from methanolyzed saponins of Momordica cochinchinensis. Nat Prod Commun 11(6):725–728PubMedPubMedCentralGoogle Scholar
  55. 55.
    Le AV, Huynh TT, Parks SE, Nguyen MH, Roach PD (2018) Bioactive composition, antioxidant activity, and anticancer potential of freeze-dried extracts from defatted Gac (Momordica cochinchinensis Spreng) seeds. Medicines (Basel) 5(3):104–122CrossRefGoogle Scholar
  56. 56.
    De Shan M, Hu LH, Chen ZL (2001) A new multiflorane triterpenoid ester from Momordica cochinchinensis Spreng. Nat Prod Lett 15(2):139–145PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Zheng L, Zhang Y, Liu Y, Yang XO, Zhan Y (2015) Momordica cochinchinensis Spreng. Seed extract suppresses breast cancer growth by inducing cell cycle arrest and apoptosis. Mol Med Rep 12(4):6300–6310PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Zheng L, Zhang Y-M, Zhan Y-Z, Liu C-X (2014) Momordica cochinchinensis seed extracts suppress migration and invasion of human breast cancer ZR-75-30 cells via down-regulating MMP-2 and MMP-9. Asian Pac J Cancer P 15:1105–1110CrossRefGoogle Scholar
  59. 59.
    Liu HR, Meng LY, Lin ZY, Shen Y, Yu YQ, Zhu YZ (2012) Cochinchina momordica seed extract induces apoptosis and cell cycle arrest in human gastric cancer cells via PARP and p53 signal pathways. Nutr Cancer 64(7):1070–1077PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Meng LY, Liu HR, Shen Y, Yu YQ, Tao X (2012) Cochinchina momordica seed extract induces G2/M arrest and apoptosis in human breast cancer MDA-MB-231 cells by modulating the PI3K/Akt pathway. Asian Pac J Cancer P 13:3483–3488CrossRefGoogle Scholar
  61. 61.
    Kang JM, Kim N, Kim B, Kim JH, Lee BY, Park JH, Lee MK, Lee HS, Kim JS, Jung HC, Song IS (2010) Enhancement of gastric ulcer healing and angiogenesis by Cochinchina Momordica seed extract in rats. J Korean Med Sci 25(6):875–881PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Oyuntsetseg N, Khasnatinov MA, Molor-Erdene P, Oyunbileg J, Liapunov AV, Danchinova GA, Oldokh S, Baigalmaa J, Chimedragchaa C (2014) Evaluation of direct antiviral activity of the Deva-5 herb formulation and extracts of five Asian plants against influenza a virus H3N8. BMC Complement Altern Med 14(1):235–244PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Shen YC, Meng L, Sun H, Zhu Y, Liu H (2015) Cochinchina momordica seed suppresses proliferation and metastasis in human lung cancer cells by regulating multiple molecular targets. Am J Chin Med 43(1):149–166PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Mazzio E, Badisa R, Eyunni S, Ablordeppey S, George B, Soliman KFA (2018) Bioactivity-guided isolation of neuritogenic factor from the seeds of the Gac plant (Momordica cochinchinensis). Evid Based Complement Alternat Med 2018:1–11CrossRefGoogle Scholar
  65. 65.
    Yu JS, Kim JH, Lee S, Jung K, Kim KH, Cho JY (2017) Src/Syk-targeted anti-inflammatory actions of triterpenoidal saponins from Gac (Momordica cochinchinensis) seeds. Am J Chin Med 45(3):459–473PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Jung K, Chin YW, Kd Y, Chae HS, Kim CY, Yoo H, Kim J (2013) Anti-inflammatory properties of a triterpenoidal glycoside from Momordica cochinchinensis in LPS-stimulated macrophages. Immunopharmacol Immunotoxicol 35(1):8–14PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Tsoi AY, Ng TB, Fong WP (2006) Immunomodulatory activity of a chymotrypsin inhibitor from Momordica cochinchinensis seeds. J Pept Sci 12(9):605–611PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Tsoi AY, Ng TB, Fong WP (2005) Antioxidative effect of a chymotrypsin inhibitor from Momordica cochinchinensis (Cucurbitaceae) seeds in a primary rat hepatocyte culture. J Pept Sci 11(10):665–668PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Tsoi AY, Wong RC, Ng TB, Fong WP (2004) First report on a potato I family chymotrypsin inhibitor from the seeds of a cucurbitaceous plant, Momordica cochinchinensis. Biol Chem 385(2):185–189PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Chan LY, He W, Tan N, Zeng G, Craik DJ, Daly NL (2013) A new family of cystine knot peptides from the seeds of Momordica cochinchinensis. Peptides 39:29–35PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Agrawal MR, Aher AN, Pal SC, Derle DV (2018) Analgesic activity of Momordica cochinchinensis and Momordica balsamina fruit extracts. Int J Green Pharm 12(4):253–257Google Scholar
  72. 72.
    Kawamura N, Watanabe H, Oshio H (1988) Saponins from roots of Momordica cochinchinensis. Phytochemistry 27(11):3585–3591CrossRefGoogle Scholar
  73. 73.
    Iwamoto M, Okabe H, Yamauchi T (1985) Studies on the constituents of Momordica cochinchinensis Spreng. II. Isolation and characterization of the root saponins, momordins I, II and III. Chem Pharm Bull 33(1):1–7CrossRefGoogle Scholar
  74. 74.
    Lin ZY, Liu X, Yang F, Yu YQ (2012) Structural characterization and identification of five triterpenoid saponins isolated from Momordica cochinchinensis extracts by liquid chromatography/tandem mass spectrometry. Int J Mass Spectrom 328:43–66CrossRefGoogle Scholar
  75. 75.
    Waterman PG, Hasan CM, Jabbar A (1985) Columbin from the root of Momordica cochinchinensis: high-field NMR studies. Planta Med 51(2):181–182CrossRefGoogle Scholar
  76. 76.
    Matsuda H, Dai Y, Ido Y, Murakami T, Yoshikawa M, Kubo M (1998) Studies on Kochiae Fructus. V. Antipruritic effects of oleanolic acid glycosides and the structure-requirement. Biol Pharm Bull 21(11):1231–1233PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Yeung HW, Ng TB, Wong NS, Li WW (1987) Isolation and characterization of an abortifacient protein, momorcochin, from root tubers of Momordica cochinchinensis (family cucurbitaceae). Int J Pept Protein Res 30(1):135–140PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Ng T, Li W, Yeung H (1986) A steryl glycoside fraction with hemolytic activity from tubers of Momordica cochinchinensis. J Ethnopharmacol 18(1):55–61PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Hasan CM, Jabbar A, Waterman PG (1987) Chondrillasterol from the tubers of Momordica cochinchinensis. Planta Med 53(6):578–579PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Bishayee A, Ahmed S, Brankov N, Perloff M (2011) Triterpenoids as potential agents for the chemoprevention and therapy of breast cancer. Front Biosci (Landmark Ed) 16:980–996CrossRefGoogle Scholar
  81. 81.
    Craik DJ, Cemazar M, Wang CK, Daly NL (2006) The cyclotide family of circular miniproteins: nature's combinatorial peptide template. Biopolymers 84(3):250–266PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Hayes M, Bleakley S (2018) Peptides from plants and their applications, in Peptide Applications in Biomedicine, Biotechnology and Bioengineering. Editor Woodhead Publishing, Koutsopoulos S, pp 603–622CrossRefGoogle Scholar
  83. 83.
    Craik DJ, Mylne JS, Daly NL (2010) Cyclotides: macrocyclic peptides with applications in drug design and agriculture. Cell Mol Life Sci 67(1):9–16PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Zoller F, Haberkorn U, Mier W (2011) Miniproteins as phage display-scaffolds for clinical applications. Molecules 16(3):2467–2485PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Lewis-Mikhael AM, Bueno-Cavanillas A, Ofir Giron T, Olmedo-Requena R, Delgado-Rodriguez M, Jimenez-Moleon JJ (2016) Occupational exposure to pesticides and prostate cancer: a systematic review and meta-analysis. Occup Environ Med 73(2):134–144PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Hurtado-Barroso S, Tresserra-Rimbau A, Vallverdú-Queralt A, Lamuela-Raventós RM (2019) Organic food and the impact on human health. Crit Rev Food Sci Nutr 59(4):704–714PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Barański M, Rempelos L, Iversen PO, Leifert C (2017) Effects of organic food consumption on human health; the jury is still out! Food Nutr Res 61(1):1287333PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Mortensen A (2005) Carotenoids and other pigments as natural colorants. Pure Appl Chem 78(8):1477–1491CrossRefGoogle Scholar
  89. 89.
    Müller-Maatsch J, Sprenger J, Hempel J, Kreiser F, Carle R, Schweiggert RM (2017) Carotenoids from gac fruit aril (Momordica cochinchinensis [Lour.] Spreng.) are more bioaccessible than those from carrot root and tomato fruit. Food Res Int 99:928–935PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Research GV (2018) Dietary supplements market size, share & trend analysis report by ingredient (botanicals, vitamins, minerals, amino acids, enzymes), by product, by application, by end-use, and segment forecasts, 2018–2024. Available from:
  91. 91.
    Landrum JT, Bone RA (2001) Lutein, zeaxanthin, and the macular pigment. Arch Biochem Biophys 385(1):28–40PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Abdel-Aal E-SM, Akhtar H, Zaheer K, Ali R (2013) Dietary sources of lutein and zeaxanthin carotenoids and their role in eye health. Nutrients 5(4):1169–1185PubMedCentralCrossRefGoogle Scholar
  93. 93.
    Ma L, Liu R, Du JH, Liu T, Wu SS, Liu XH (2016) Lutein, zeaxanthin and meso-zeaxanthin supplementation associated with macular pigment optical density. Nutrients 8(7):426PubMedCentralCrossRefGoogle Scholar
  94. 94.
    Kruk J, Kubasik-Kladna K, Aboul-Enein YH (2016) The role oxidative stress in the pathogenesis of eye diseases: current status and a dual role of physical activity. Mini-Rev Med Chem 16(3):241–257CrossRefGoogle Scholar
  95. 95.
    Bungau S, Abdel-Daim MM, Tit DM, Ghanem E, Sato S, Maruyama-Inoue M, Yamane S, Kadonosono K (2019) Health benefits of polyphenols and carotenoids in age-related eye diseases. Oxidative Med Cell Longev 2019:22CrossRefGoogle Scholar
  96. 96.
    Stahl W, Sies H (2003) Antioxidant activity of carotenoids. Mol Asp Med 24(6):345–351CrossRefGoogle Scholar
  97. 97.
    Maden M (2002) Retinoid signalling in the development of the central nervous system. Nat Rev Neurosci 3(11):843–853PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.School of SciencesRMIT UniversityMelbourneAustralia
  2. 2.School of Environmental and Life SciencesThe University of NewcastleOurimbahAustralia
  3. 3.School of Science and HealthWestern Sydney UniversityOurimbahAustralia

Section editors and affiliations

  • Vishwas Anant Bapat
    • 1
  1. 1.Department of BiotechnologyShivaji UniversityKolhapurIndia

Personalised recommendations