Advertisement

Bioactive Compounds of Tucuma (Astrocaryum aculeatum G. Mey.)

  • Ivana Beatrice Mânica da CruzEmail author
  • Fernanda Barbisan
  • Euler Esteves Ribeiro
Reference work entry
  • 50 Downloads
Part of the Reference Series in Phytochemistry book series (RSP)

Abstract

Amazon region has a greatest biodiversity and social diversity from indigenous and riverine populations. The natives of the Amazon, especially indigenous populations, depend on several palms for obtaining raw material for food, housing, clothing, hunting, and fishing including tucuma fruit (Astrocaryum aculeatum). Tucuma is rich in unsaturated fatty acids, carotenoids, and polyphenols. Despite limited scientific reports, tucuma could present important antioxidant, genoprotective, antitumoral, antimicrobial activities.

Keywords

Amazonian diet Carotenoids Chronic nontransmissible diseases Nutrigenomics Tucuma 

Abbreviations

APL

Acute promyelocytic leukaemia

ATBC

Alpha-Tocopherol, Beta-Carotene Cancer Prevention

ATRA

All-trans-retinoic acid

CNTD

Chronic nontransmissible diseases

CRC

Colon rectal cancer

HDL

High density lipoprotein

LDL

Low density lipoprotein

PBMC

Peripheral blood mononuclear cells

RAR

Retinoic acid receptors

References

  1. 1.
    Didonet AA, Ferraz IDK (2014) The comercial tucumã trade (Astrocaryum aculeatum G. Mey – Arecaceae) in Manaus (Amazonas, Brasil). Rev Bras Frutic 36:353–362CrossRefGoogle Scholar
  2. 2.
    Balslev H, Kahn F, Millan B, Svenning J-C, Kristiansen T, Borchsenius F, Pedersen D, Eiserhardt WL (2011) Species diversity and growth forms in tropical american palm communities. Botanical Rev 77:381–425Google Scholar
  3. 3.
    Oliveira NP, Oliveira MSP, Davide LC, Kalisz S (2017) Population genetic structure of three species in the genus Astrocaryum G. Mey. (Arecaceae). Genet Mol Res 16:gmr16039676Google Scholar
  4. 4.
    Schroth G, Da Mota MSS, Lopes R, De Freitas AF (2004) Extractive use, management and in situ domestication of a weedy palm, Astrocaryum tucuma, in the Central Amazon. For Ecol Manag 202:161–179CrossRefGoogle Scholar
  5. 5.
    TDS A-C (2018) Bioactive compounds and health benefits of some palm species traditionally used in Africa and the Americas – a review. J Ethnopharmacol 224:202–229CrossRefGoogle Scholar
  6. 6.
    Rezende GM, Vieira DLM (2019) Forest restoration in southern Amazonia: soil preparation triggers natural regeneration. For Ecol Manag 433:93–104CrossRefGoogle Scholar
  7. 7.
    Moura de Oliveira Beltrame D, Neves Soares Oliveira C, Borelli T, RAC S, Coradin L, Hunter D (2018) Brazilian underutilised species to promote dietary diversity, local food procurement, and biodiversity conservation: a food composition gap analysis. Lancet Planet Heal 2:S224Google Scholar
  8. 8.
    Aguiar JPL, Marinho HA, Rebêlo YS, Shrimpton R (2017) Nutritional aspects of some fruits of the Amazon. Acta Amazon 10:755–758CrossRefGoogle Scholar
  9. 9.
    Yuyama K, Aguiar JPL, Araújo BGP, Coelho ECS (2016) Assessment and physico-chemical characterization of fruits from different Tucuma palm tree accesses for keeping their preservation in Central Amazonia. J Agric Sci 8:88Google Scholar
  10. 10.
    Santos MMRS, Fernandes DS, Cândido CJ, Cavalheir LF, Silva AF, Nasicmento VA, Ramos Filho MM, Santos EF, Hiane PA (2018) Physical-chemical, nutritional and antioxidant properties of tucumã (Astrocaryum huaimi Mart.) fruits. Semina 39:1571–1532Google Scholar
  11. 11.
    Silva RS, de Santos CL, Mar JM, Kluczkovski M, Figueiredo JÁ, Borges SV, Bakry AM, Sanches EA, Campelo PH (2018) Physicochemical properties of tucumã (Astrocaryum aculeatum) powders with different carbohydrate biopolymers. LWT 94:79–86CrossRefGoogle Scholar
  12. 12.
    Saini RK, Keum YS (2018) Omega-3 and omega-6 polyunsaturated fatty acids: dietary sources, metabolism, and significance – a review. Life Sci 203:255–267CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Sokoła-Wysoczańska E, Wysoczański T, Wagner J, Czyż K, Bodkowski R, Lochyński S, Patkowska-Sokoła B (2018) Polyunsaturated fatty acids and their potential therapeutic role in cardiovascular system disorders – a review. Nutrients 10:1561PubMedCentralCrossRefGoogle Scholar
  14. 14.
    Belury MA, Cole RM, Snoke DB, Banh T, Angelotti A (2018) Linoleic acid, glycemic control and type 2 diabetes. Prostaglandins Leukot Essent Fat Acids 132:30–33CrossRefGoogle Scholar
  15. 15.
    Kelley NS, Hubbard NE, Erickson KL (2018) Conjugated linoleic acid isomers and cancer. J Nutr 137:2599–2607CrossRefGoogle Scholar
  16. 16.
    Zhou Y, Wang T, Zhai S, Li W (2016) Linoleic acid and breast cancer risk: a meta-analysis. Public Health Nutr 19:1457–1463CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Aucoin M, Cooley K, Knee C et al (2017) Fish-derived omega-3 fatty acids and prostate cancer: a systematic review. Integr Cancer Ther 16:32–62CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Alexander DD, Bassett JK, Weed DL, Barrett EC, Watson H, Harris W (2015) Meta-analysis of long-chain Omega-3 polyunsaturated fatty acids (LCω-3PUFA) and prostate cancer. Nutr Cancer 67:543–554PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Volpato M, Hull MA (2018) Omega-3 polyunsaturated fatty acids as adjuvant therapy of colorectal cancer. Cancer Metastasis Rev 37:545–555PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Lee HJ, Han YM, An JM, Kang EA, Park YJ, Cha JY, Hahm KB (2018) Role of omega-3 polyunsaturated fatty acids in preventing gastrointestinal cancers: current status and future perspectives. Expert Rev Anticancer Ther 18:1189–1203CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Ma YJ, Yu J, Xiao J, Cao BW (2015) The consumption of omega-3 polyunsaturated fatty acids improves clinical outcomes and prognosis in pancreatic cancer patients: a systematic evaluation. Nutr Cancer 67:112–118CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Thesing CS, Bot M, Milaneschi Y, Giltay EJ, Penninx BWJH (2018) Omega-3 and omega-6 fatty acid levels in depressive and anxiety disorders. Psychoneuroendocrinology 87:53–62CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Yang Y, Kim Y, Je Y (2018) Fish consumption and risk of depression: epidemiological evidence from prospective studies. Asia Pac Psychiatry 10:E12335CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Agostoni C, Nobile M, Ciappolino V, Delvecchio G, Tesei A, Turolo S, Crippa A, Mazzocchi A, Altamura CA, Brambilla P (2017) The role of omega-3 fatty acids in developmental psychopathology: a systematic review on early psychosis, autism, and ADHD. Int J Mol Sci 18:E2608CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Aucoin M, Lachance L, Cooley K, Kidd S (2018) Diet and psychosis: a scoping review. Neuropsychobiology 25:1–23Google Scholar
  26. 26.
    Choy O, Raine A (2018) Omega-3 supplementation as a dietary intervention to reduce aggressive and antisocial behavior. Curr Psychiatry Rep 20:32CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    La Rosa F, Clerici M, Ratto D, Occhininegro A, Liccito A, Romeo M, Di Lorio C, Rossi P (2018) The gut-brain axis in Alzheimer’s disease and omega-3. A critical overview of clinical trials. Nutrients 10:E1267CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Pistollato F, Iglesias RC, Ruiz R, Aparicio S, Crespo J, Lopez LD, Manna PP, Giampieri F, Battino M (2018) Nutritional patterns associated with the maintenance of neurocognitive functions and the risk of dementia and Alzheimer’s disease: a focus on human studies. Pharmacol Res 131:32–43CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Moore K, Hughes CF, Ward M, Hoey L, McNulty H (2018) Diet, nutrition and the ageing brain: current evidence and new directions. Proc Nutr Soc 77:152–163CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Delgado GE, Krämer BK, Lorkowski S, März W, von Schacky C, Kleber ME (2017) Individual omega-9 monounsaturated fatty acids and mortality – the ludwigshafen risk and cardiovascular health study. J Clin Lipidol 11:126–135CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Medeiros-De-Moraes IM, Gonçalves-De-Albuquerque CF, Kurz ARM, Oliveira FMJ, de Abreu VHP, Torres RC, Carvalho VF, Estato V, Bozza PT, Sperandio M, de Castro-Faria-Neto HC, Silva AR (2018) Omega-9 oleic acid, the main compound of olive oil, mitigates inflammation during experimental sepsis. Oxidative Med Cell Longev 2018:6053492CrossRefGoogle Scholar
  32. 32.
    Meng H, Matthan NR, Wu D, Li L, Rodríguez-Morató J, Cohen R, Galluccio JM, Dolnikowski GG, Lichtenstein AH (2019) Comparison of diets enriched in stearic, oleic, and palmitic acids on inflammation, immune response, cardiometabolic risk factors, and fecal bile acid concentrations in mildly hypercholesterolemic postmenopausal women-randomized crossover trial. Am J Clin Nutr 110:305–315CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Singh PK, Gari M, Choudhury S, Shukla A, Gangwar N, Garg SK (2019) Oleic acid prevents isoprenaline-induced cardiac injury: effects on cellular oxidative stress, inflammation and histopathological alterations. Cardiovasc Toxicol 20:28–48Google Scholar
  34. 34.
    Rizwan S, Benincasa C, Mehmood K, Anjum S, Mehmood Z, Alizai GH, Azam M, Perri E, Sajjad A (2019) Fatty acids and phenolic profiles of extravirgin olive oils from selected Italian cultivars introduced in Southwestern Province of Pakistan. J Oleo Sci 68:33–43CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Del Río LF, Gutiérrez-Casado E, Varela-López A, Villalba JM (2016) Olive oil and the hallmarks of aging. Molecules 21:163CrossRefGoogle Scholar
  36. 36.
    de Souza Filho OC, Sagrillo MR, Garcia LFM, Machado AK, Cadoná F, Ribeiro EE, Duarte MM, Morel AF, da Cruz IB (2013) The in vitro genotoxic effect of Tucuma (Astrocaryum aculeatum), an Amazonian fruit rich in carotenoids. J Med Food 16:1013–1021CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Sagrillo MR, Garcia LFM, De Souza Filho OC, Duarte MM, Ribeiro EE, Cadoná FC, da Cruz IB (2015) Tucuma fruit extracts (Astrocaryum aculeatum Meyer) decrease cytotoxic effects of hydrogen peroxide on human lymphocytes. Food Chem 173:741–748PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Jobim ML, Santos RCV, dos Santos Alves CF et al (2014) Antimicrobial activity of Amazon Astrocaryum aculeatum extracts and its association to oxidative metabolism. Microbiol Res 169:314–323CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Frausin G, Ari DFH, Lima RBS, Kinupp VF, Ming LC, Pohlit AM, Milliken W (2015) An ethnobotanical study of anti-malarial plants among indigenous people on the upper Negro River in the Brazilian Amazon. J Ethnopharmacol 174:238–252CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Copetti P, Oliveira P, Garcia L, Vaucher R, Duarte M, Krause L, Cruz I, Ourique A, Sagrillo M (2019) Tucumã extracts decreases PML/RARΑ gene expression in NB4/APL cell line. Arch Biosci Health 1:77–98CrossRefGoogle Scholar
  41. 41.
    Santos RCV, Sagrillo MR, Ribeiro EE, Cruz IBM (2018) The Tucuma of Amazonas – Astrocaryum aculeatum. In: Exotic fruits, Elsevier, London, pp 419–425Google Scholar
  42. 42.
    Carneiro ABA, Pinto EJS, Ribeiro IF, Magalhães MRG, MonteiroNeto MAB (2017) Effect of Astrocaryum aculeatum (Tucuma) on doxorubicin toxicity: experimental model in vivo. Acta Paul Enferm 30:233–239CrossRefGoogle Scholar
  43. 43.
    Baldissera MD, Souza CF, Grando TH, Cossetin LF, Sagrillo MR, Nascimento K, da Silva AS, Machado AK, da Cruz IBM, Stefani LM, Klein B, Wagner R, Monteiro SG (2017) Antihyperglycemic, antioxidant activities of tucuma oil (Astrocaryum vulgare) in alloxan-induced diabetic mice, and identification of fatty acid profile by gas chromatograph: new natural source to treat hyperglycemia. Chem Biol Interact 270:51–58CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Baldissera MD, Souza CF, Doleski PH, Grando TH, Sagrillo MR, da Silva AS, Leal DBR, Monteiro SG (2017) Treatment with tucumã oil (Astrocaryum vulgare) for diabetic mice prevents changes in seric enzymes of the purinergic system: improvement of immune system. Biomed Pharmacother 94:374–379CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Meléndez-Martínez AJ (2019) An overview of carotenoids, apocarotenoids, and vitamin A in agro-food, nutrition, health, and disease. Mol Nutr Food Res 63:e1801045CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Rodriguez-Amaya DB, Kimura M, Godoy HT, Amaya-Farfan J (2008) Updated Brazilian database on food carotenoids: factors affecting carotenoid composition. J Food Compos Anal 21:445–463CrossRefGoogle Scholar
  47. 47.
    De Rosso VV, Mercadante AZ (2007) Identification and quantification of carotenoids, by HPLC-PDA-MS/MS, from Amazonian fruits. J Agric Food Chem 55:5062–5072CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Bohn T (2019) Antioxidants carotenoids and markers of oxidative stress in human observational studies and intervention trials: Implications for chronic diseases. Antioxidants (Basel) 8:E179CrossRefGoogle Scholar
  49. 49.
    Buijsse B, Feskens EJ, Schlettwein-Gsell D, Ferry M, Kok FJ, Kromhout D, de Groot LC (2018) Plasma carotene and α-tocopherol in relation to 10-y all-cause and cause-specific mortality in European elderly: the survey in Europe on nutrition and the elderly, a concerted action (SENECA). Am J Clin Nutr 82:879–886Google Scholar
  50. 50.
    Albanes D, Heinonen OP, Taylor PR, Virtamo J, Edwards BK, Rautalahti M, Hartman AM, Palmgren J, Freedman LS, Haapakoski J, Barrett MJ, Pietinen P, Malila N, Tala E, Liippo K, Salomaa ER, Tangrea JA, Teppo L, Askin FB, Taskinen E, Erozan Y, Greenwald P, Huttunen JK (1996) α-Tocopherol and β-carotene supplements and lung cancer incidence in the alpha-tocopherol, beta-carotene cancer prevention study: effects of base- line characteristics and study compliance. J Natl Cancer Inst 88:1560–1570CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Omenn GS, Goodman GE, Thornquist MD, Balmes J, Cullen MR, Glass A, Keogh JP, Meyskens FL, Valanis B, Williams JH, Barnhart S, Hammar S (2002) Effects of a combination of beta carotene and vitamin a on lung cancer and cardiovascular disease. N Engl J Med 334:1150–1155CrossRefGoogle Scholar
  52. 52.
    Cullen MR, Barnett MJ, Balmes JR, Cartmel B, Redlich CA, Brodkin CA, Barnhart S, Rosenstock L, Goodman GE, Hammar SP, Thornquist MD, Omenn GS (2005) Predictors of lung cancer among asbestos-exposed men in the β-carotene and retinol efficacy trial. Am J Epidemiol 161:260–270CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Huang J, Weinstein SJYK, Männistö S, Albanes D (2018) Serum beta carotene and overall and cause-specific mortality. Circ Ress 123:1339–1349CrossRefGoogle Scholar
  54. 54.
    Calabrese EJ, Baldwin LA (2002) U-shaped dose-responses in biology, toxicology, and public health. Annu Rev Public Health 22:15–33CrossRefGoogle Scholar
  55. 55.
    Álvarez R, Vaz B, Gronemeyer H, De Lera RA (2014) Functions, therapeutic applications, and synthesis of retinoids and carotenoids. Chem Rev 114:1–125CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Garattini E, Bolis M, Garattini SK, Fratelli M, Centritto F, Paroni G, Gianni M, Zanetti A, Pagani A, Fisher JN, Zambelli A, Terao M (2014) Retinoids and breast cancer: from basic studies to the clinic and back again. Cancer Treat Rev 40:739–749CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Carlos-Reyes Á, López-González JS, Meneses-Flores M et al (2019) Dietary compounds as epigenetic modulating agents in cancer. Front Genet 10:79PubMedCentralCrossRefPubMedGoogle Scholar
  58. 58.
    Sharma S, Ali A, Ali J, Sahni JK, Baboota S (2013) Rutin: therapeutic potential and recent advances in drug delivery. Expert Opin Investig Drugs 22:1063–1079CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Choubey S, Varughese LR, Kumar V, Beniwal V (2015) Medicinal importance of gallic acid and its ester derivatives: a patent review. Pharm Pat Anal 4:305–315CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Kardum N, Glibetic M (2018) Polyphenols and their interactions with other dietary compounds: implications for human health. In: Advances in food and nutrition research, Elsevier, London, pp 103–144Google Scholar
  61. 61.
    Agrawal K (2011) Doxorubicin. In: Pharm (ed) The comprehensive pharmacology reference, Elsevier, London, pp 1–5Google Scholar
  62. 62.
    Azevedo SCM, Vieira LM, Matsuura T et al (2017) Study of the conservation of the nutritional properties of the pulp of tucumã (Astrocaryum aculeatum) in natura in vacuum packages. Braz J Food Technol 20:E2016107CrossRefGoogle Scholar
  63. 63.
    McMinn WAM, Magee TRA (1999) Principles, methods and applications of the convective drying of foodstuffs. Food Bioprod Process Trans Inst Chem Eng Part C 77:175–193CrossRefGoogle Scholar
  64. 64.
    Bet C, Dos Santos OV, Corrêa NCF, França LF (2016) Comparative study on the quality of oil extracted from two tucuma varieties using supercritical carbon dioxide. Food Sci Technol 36:322–328CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Ivana Beatrice Mânica da Cruz
    • 1
    Email author
  • Fernanda Barbisan
    • 1
  • Euler Esteves Ribeiro
    • 2
  1. 1.Programa de Pós-Graduação em GerontologiaUniversidade Federal de Santa MariaSanta MariaBrazil
  2. 2.Universidade Aberta da Terceira IdadeUniversidade do Estado do AmazonasManausBrazil

Section editors and affiliations

  • Hosakatte Niranjana Murthy
    • 1
  1. 1.Department of BotanyKarnatak UniversityDharwadIndia

Personalised recommendations