Advertisement

Angle-Resolved Photoemission

  • Peter D. JohnsonEmail author
Reference work entry
  • 83 Downloads

Abstract

Angle-resolved photoemission is one of the key probes of the electronic structure and associated dynamics of condensed matter systems. With the development of new technologies the technique has undergone a renaissance in the last two decades. Modern spectrometers now allow multiplexing in energy and momentum and this has resulted in dramatic improvements in the corresponding resolutions. With these increased resolutions it has become possible to examine in detail the effects of interactions with collective excitations, including phonons, spin excitations and charge density waves. The addition of spin detection enables studies of magnetic phenomena in surfaces and thin films. New developments in light sources, including both lab-based and accelerator based lasers, are allowing pump-probe experiments with photoemission being used to probe the time evolution of systems that have been pumped into non-equilibrium states.

Keywords

Electronic structure Photoemission Superconductivity Surface states Synchrotron radiation Topological insulators 

Notes

Acknowledgments

This chapter was written with financial support from the U.S. DOE, Office of Basic Energy Sciences under Contract No. DE-AC02-98CH10886.

References

  1. P.W. Anderson, Science 235, 1196 (1987)ADSCrossRefGoogle Scholar
  2. P.W. Anderson et al., J. Phys. Condens. Matter 24, R755 (2004)CrossRefGoogle Scholar
  3. T. Balasubramanian et al., Phys. Rev. B 57, R6866 (1998)ADSCrossRefGoogle Scholar
  4. J.G. Bednorz, K.A. Muller, Z. Phys. B Condens. Matter 64, 189 (1986)CrossRefGoogle Scholar
  5. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)ADSCrossRefGoogle Scholar
  6. Y. Chen et al., Science 325, 178 (2009)ADSCrossRefGoogle Scholar
  7. R. Comin et al., Science 343, 390 (2014)ADSCrossRefGoogle Scholar
  8. A. Damascelli et al., Rev. Mod. Phys. 75, 473 (2003)ADSCrossRefGoogle Scholar
  9. H. Ding et al., Phys. Rev. B 54, 9678 (1996a)ADSCrossRefGoogle Scholar
  10. H. Ding et al., Nature (London) 382, 51 (1996b)ADSCrossRefGoogle Scholar
  11. H. Ding et al., Eur. Phys. Lett. 83, 47001 (2008)ADSCrossRefGoogle Scholar
  12. N. Doiron-Leyraud et al., Nature 447, 565 (2007)ADSCrossRefGoogle Scholar
  13. P.M. Echenique, J.B. Pendry, J. Phys. C 11, 2065 (1978)ADSCrossRefGoogle Scholar
  14. P.M. Echenique, J.B. Pendry, J. Phys C-Solid State Phys. 11, 2065 (2006)ADSCrossRefGoogle Scholar
  15. A.V. Fedorov, T. Valla, D.J. Huang, G. Reisfeld, F. Loeb, F. Liu, P.D. Johnson, J. Elect. Spect. Rel. Phenom. 92, 19 (1998)CrossRefGoogle Scholar
  16. R.H. Gaylord, S.D. Kevan, Phys. Rev. B 39, 2973 (1989)ADSCrossRefGoogle Scholar
  17. J. Graf, C. Jozwiak, A.K. Schmid, Z. Hussian, A. Lanzara, Phys. Rev. B 71, 144429 (2005)ADSCrossRefGoogle Scholar
  18. G. Grimvall, The Electron-Phonon Interaction in Metals (North-Holland, New York, 1981)Google Scholar
  19. Y. Guo et al., Science 306, 1915 (2004)ADSCrossRefGoogle Scholar
  20. W.A. Harrison, Electronic Structure and the Properties of Solids: The Physics of the Chemical Bond. (Freeman, San Francisco, 1980)Google Scholar
  21. M.Z. Hasan, C.L. Kane, Rev. Mod. Phys. 82, 3045 (2010)ADSCrossRefGoogle Scholar
  22. S. He et al., Nat. Mater. 12, 605 (2013)ADSCrossRefGoogle Scholar
  23. Ph. Hofmann et al., New J. Phys. 11, 125005 (2009)ADSCrossRefGoogle Scholar
  24. D. Hseih et al., Nature 452, 970 (2008)ADSCrossRefGoogle Scholar
  25. D.J. Huang et al., Rev. Sci. Instrum. 73, 3778 (2002)ADSCrossRefGoogle Scholar
  26. S. Hufner, Very High Resolution Photoelectron Spectroscopy (Springer, Berlin, 2007)CrossRefGoogle Scholar
  27. S.L. Hulbert, P.D. Johnson, N.G. Stoffel, W.A. Royer, N.V. Smith, Phys. B 31, 6815 (1985)Google Scholar
  28. J.E. Inglesfield, E.W. Plummer, in Angle-Resolved Photoemission, Theory and Current Applications (chapter 2), ed. by S.D. Kevan (Elsevier, Amsterdam, 1992)Google Scholar
  29. P.D. Johnson, Rep. Prog. Phys. 60, 1217 (1997)ADSCrossRefGoogle Scholar
  30. P.D. Johnson et al., Phys. Rev. Lett. 87, 177007 (2001)ADSCrossRefGoogle Scholar
  31. C. Jozwiak et al., Nat. Phys. 9, 293 (2013)CrossRefGoogle Scholar
  32. C.L. Kane, E. Mele, Phys. Rev. Lett. 95, 226801 (2005)ADSCrossRefGoogle Scholar
  33. S.D. Kevan et al., Phys. Rev. B 31, 3348 (1985)ADSCrossRefGoogle Scholar
  34. J. Kirschner et al., Phys. Rev. B 88, 125419 (2013)ADSCrossRefGoogle Scholar
  35. E. Kisker et al., Rev. Sci. Inst. 53, 1137 (1982)ADSCrossRefGoogle Scholar
  36. Y. Kohsaka et al., Nature 454, 1072 (2008)ADSCrossRefGoogle Scholar
  37. T. Kondo et al., Phys. Rev. Lett. 111, 157003 (2013)ADSCrossRefGoogle Scholar
  38. A. Lanzara et al., Nature 412, 510 (2001)ADSCrossRefGoogle Scholar
  39. S. LaShell et al., Phys. Rev. Lett. 77, 3419 (1996)ADSCrossRefGoogle Scholar
  40. S.G. Louie et al. Phys. Rev. Lett. 44, 549 (1980)ADSCrossRefGoogle Scholar
  41. G.D. Mahan, Many Particle Physics (Plenum Press, New York, 1990)CrossRefGoogle Scholar
  42. D.S. Marshall et al., Phys. Rev. Lett. 76, 4841 (1996)ADSCrossRefGoogle Scholar
  43. N. Martensson et al., J. Elect. Spect. Relat. Phenom. 70, 117 (1994)CrossRefGoogle Scholar
  44. B.A. McDougall et al., Phys. Rev. B 51, 13891 (1995)ADSCrossRefGoogle Scholar
  45. M.R. Norman, A. Kanigel, M. Randeria, U. Chatterjee, J.C. Campuzano, Phys. Rev. B 76, 174501 (2007)ADSCrossRefGoogle Scholar
  46. K.S. Novoselov et al., Nature 438, 197 (2005)ADSCrossRefGoogle Scholar
  47. T. Ohta et al., Science 313, 951 (2006)ADSCrossRefGoogle Scholar
  48. J.J. Paggel et al., 1999 Science 283, 1709ADSCrossRefGoogle Scholar
  49. Z.-H. Pan et al., Phys. Rev. Lett. 108, 187001 (2012)ADSCrossRefGoogle Scholar
  50. D. Petrovykh et al., Appl. Phys. Lett. 73, 3459 (1998)ADSCrossRefGoogle Scholar
  51. W.E. Pickett et al., Science 255, 46 (1992)ADSCrossRefGoogle Scholar
  52. J. Rameau et al., J. Electron. Spectrosc. Relat. Phenom. 181, 35 (2010)CrossRefGoogle Scholar
  53. J. Rameau et al., Phys. Rev. B. 89, 115115 (2014)ADSCrossRefGoogle Scholar
  54. F. Reinert et al., Phys. Rev. B 63, 115415 (2001)ADSCrossRefGoogle Scholar
  55. F. Schmitt et al., Science 321, 1649 (2008)ADSCrossRefGoogle Scholar
  56. F. Schmitt et al., New J. Phys. 13, 63022 (2011)CrossRefGoogle Scholar
  57. Z.X. Shen et al., Phys. Rev. Lett. 70, 1553 (1993)ADSCrossRefGoogle Scholar
  58. E.H. da Silva Neto et al., Science 343, 393 (2014)ADSCrossRefGoogle Scholar
  59. N.V. Smith et al., Sol. Stat. Comm. 15, 211 (1974)ADSCrossRefGoogle Scholar
  60. N.V. Smith et al., Phys. Rev. B 47, 15476 (1993)ADSCrossRefGoogle Scholar
  61. N.V. Smith et al., Phys. Rev. B 49, 332 (1994)ADSCrossRefGoogle Scholar
  62. A. Tamai et al., Phys. Rev. B 87, 075113 (2013)ADSCrossRefGoogle Scholar
  63. T. Valla et al., Science 285, 2110 (1999a)CrossRefGoogle Scholar
  64. T. Valla et al., Phys. Rev. Lett. 83, 2085 (1999b)ADSCrossRefGoogle Scholar
  65. C.M. Varma et al., Phys. Rev. Lett. 63, 1996 (1989)ADSCrossRefGoogle Scholar
  66. P.R. Wallace, Phys. Rev. 71, 622 (1947)ADSCrossRefGoogle Scholar
  67. M. Weinelt, J. Phys. Condens. Matter 14, R1099 (2002)ADSCrossRefGoogle Scholar
  68. M.K. Wu et al., Phys. Rev. Lett. 58, 908 (1987)ADSCrossRefGoogle Scholar
  69. Y. Xia et al., Nat. Phys. 5, 398 (2009)CrossRefGoogle Scholar
  70. K.Y. Yang et al., Phys. Rev. B 73, 174501 (2006)ADSCrossRefGoogle Scholar
  71. H.B. Yang, J.D. Rameau, P.D. Johnson, T. Valla, A. Tsvelik, G.D. Gu, Nature 456, 77 (2008)ADSCrossRefGoogle Scholar
  72. R. Zdyb, E. Bauer, Surf. Rev. Lett. 6, 1485 (2002)ADSCrossRefGoogle Scholar
  73. Y.-F. Zhang et al., Phys. Rev. Lett. 95, 96802 (2005)ADSCrossRefGoogle Scholar
  74. S.Y. Zhou et al., Nat. Phys. 2, 595 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Condensed Matter Physics and Materials Science DepartmentBrookhaven National LaboratoryUptonUSA

Personalised recommendations