Vacuum Systems for Synchrotron Light Sources and FELs

  • Lutz LiljeEmail author
Reference work entry


Vacuum systems of particle accelerators have to account for various boundary conditions. The main requirement is keeping a specified pressure for the machine during operation with changing synchrotron radiation load on the surface and varying temperatures. Other effects like the beam-wall interaction due to wakefields, the avoidance of particle transport to protect sensitive surfaces, and cost have to be considered as well. The design of the vacuum systems results in several challenges ranging from the mechanical design, surface physics, and materials science to process engineering.


Vacuum technology Particle accelerators Pumps Gauges Outgassing 


  1. E. Al-Dmour, Vacuum performance in the most recent third generation synchrotron light sources, in Proceedings of EPAC08, Genoa, Italy, OZBG01, 2008, p. 31 ffGoogle Scholar
  2. E. Al-Dmour, ALBA Storage Ring Vacuum System commissioning, in Proceedings of IPAC2011, San Sebastián, Spain, TUPS015, 2011, p. 1551 ffGoogle Scholar
  3. Balewski, PETRA III Technical Design Report, DESY, Hamburg 2004-035 (2004)Google Scholar
  4. M. Böhnert, D. Hoppe, L. Lilje, H. Remde, J. Wojtkiewicz, K. Zapfe, Particle free pump down and venting of UHV Vacuum Systems, in Proceedings of the 14th Workshop on RF Superconductivity, Berlin, 2007, THPPO104, 2009Google Scholar
  5. Calcvac (2011) Calcvac – a program which can calculate pressure profiles in accelerator beamlines.
  6. A.W. Chao, K.H. Mess, M. Tigner, F. Zimmermann, Handbook of Accelerator Physics and Engineering, 2nd edn. (2013), World Scientific, Singapore. ISBN: 978-981-4415-84-2Google Scholar
  7. J.-R. Chen, Construction of a large accelerator TPS. Presentation to OLAV IV, NSRRC, Hsinchu, 2014Google Scholar
  8. S.M. Chung, Performance of the PLS Storage Ring Vacuum System, in Proceedings of the APAC98, Tsukuba, Japan, 4E103, 1998, p. 277 ffGoogle Scholar
  9. J.D. Cockcroft, E.T.S. Walton, Experiments with high velocity positive ions. Proc. R. Soc. Lond. A 136(830), 619–630 (1932). Scholar
  10. M. Cox, Diamond Light Source Vacuum Systems: the first seven years of user operations. Presentation to OLAV IV, NSRRC, Hsinchu, 2014Google Scholar
  11. M. Cox et al., Diamond Light Source Vacuum Systems commissioning status, in Proceedings of EPAC06, Edinburgh, Scorland, THPLS025, 2006, p. 3332 ffGoogle Scholar
  12. DIN, DIN 28400 Teil 1, (Mai 1990): Vakuumtechnik; Benennungen und Definitionen; Allgemeine Benennungen (2009)Google Scholar
  13. M.J. Ferreira, LCLS-II Project. Presentation to OLAV IV, NSRRC, Hsinchu, 2014Google Scholar
  14. P. Grafström, Lifetime, cross section and activation, in CERN Accelerator School Vacuum in Accelerators: Platja d’Aro, Spain, 2006, CERN, Geneva, CERN-2007-003 (2006)Google Scholar
  15. O. Gröbner, A.G. Mathewson, H. Störi, P. Strubin, Studies of photon induced gas desorption using synchrotron radiation. Vacuum 33, 397–408 (1983)ADSCrossRefGoogle Scholar
  16. G.Y. Hsiung et al., Fifteen years operation experiences of TLS Vacuum System, in Proceedings of PAC09, Vancouver, BC, Canada, WE4RAC03, 2009, p. 1941 ffGoogle Scholar
  17. P.C. Marin, Synchrotron radiation stimulated gas desorption from metals. Nucl. Inst. Methods Phys. Res. B 89, 69–73 (1994). Copyright 1994. Reprinted with permission from ElsevierADSCrossRefGoogle Scholar
  18. H.P. Marques, G. Debut, M. Hahn, Photodesorption measurements at ERSF D31, in Proceedings of IPAC2011, San Sebastián, Spain, TUPS002, 2011, p. 1518 ff. Picture reproduced under CC-BY 3.0.
  19. Molflow, Molflow+ − a Monte-Carlo Simulator package developed at CERN (2013),
  20. S.P. Møller, Beam residual gas interactions, in CERN Accelerator School Vacuum Technology, Snekersten, Denmark, CERN, Geneva, CERN-99-05 (1999)Google Scholar
  21. D. Na, Updated status of the PAL-XFEL Vacuum System. Presentation to OLAV IV, NSRRC, Hsinchu, 2014Google Scholar
  22. B. Nagorny, Performance of the vacuum system for the PETRA III damping wiggler section. Vacuum 86(7), 822–826 (2012)ADSCrossRefGoogle Scholar
  23. B. Nagorny et al., Vacuum system design of the third generation synchrotron radiation source PETRA III. J. Phys. Conf. Ser. 100, 092012 (2008).; © IOP Publishing. Reproduced with permission. All rights reservedCrossRefGoogle Scholar
  24. J.R. Noonan, APS Storage Ring Vacuum System performance, in Proceedings of the PAC07, Vancouver, B.C., Canada, 1998, p. 3552 ffGoogle Scholar
  25. H. Ohkuma et al., Vacuum conditioning and beam lifetime of the Spring-8 storage ring, in Proceedings of the 1999 Particle Accelerator Conference, New York, 1999, 1999, p. 2352 ffGoogle Scholar
  26. A. Piwinski, The Touschek Effect in Strong Focussing Storage Rings, DESY 98-179. arXiv:physics/9903034v1 [physics.acc-ph]. ISSN 0418-9833; November 1998 (1999)Google Scholar
  27. E. Rutherford, Proc. R. Soc. Lond. 117(777), 310 (1928). Scholar
  28. M. Seidel, J. Boster, R. Böspflug, W. Giesske, U. Naujoks, M. Schwartz, The vacuum system for PETRA III, in Proceedings of 2005 Particle Accelerator Conference, Knoxville, Tennessee, 2005, p. 2473 ff. Picture reproduced under CC-BY 3.0.
  29. P. Tavares et al., Commissioning and first-year operational results of the MAX IV 3 GeV ring. J. Synchrotron Radiat. 25, 1291–1316 (2018). Scholar
  30. E. Trakhtenberg, P. Den Hartog, G. Wiemerslage, Extruded aluminum vacuum chambers for insertion devices, in Proceedings of 2011 Particle Accelerator Conference, New York, NY, USA, THOBS5, 2011, p. 2093 ffGoogle Scholar

Further Reading

    Vacuum Physics and Technology

    1. K. Jousten (ed.), Wutz Handbuch Vakuumtechnik: Theorie und Praxis, Auflage: 9, überarb. u. erw. Aufl. (Vieweg+Teubner Verlag, Wiesbaden, 2006). ISBN-10: 383480133XGoogle Scholar
    2. J.F. O’Hanlon, A User’s Guide to Vacuum Technology, 3rd edn. (Wiley-Interscience, 2003). ISBN-10: 0471270520Google Scholar

    Accelerator-Centric Vacuum Compendia

    1. CAS, Synchrotron Radiation and Free Electron Lasers (1996), CERN, GenevaGoogle Scholar
    2. CAS, Vacuum Technology, CERN-99-05 (Snekersten, 1999), CERN, GenevaGoogle Scholar
    3. CAS, Vacuum in Accelerators, CERN-2007-003 (Platja d’Aro, 2006), CERN, GenevaGoogle Scholar
    4. CAS, Vacuum in Accelerators (Glumslöv, 2017), CERN, GenevaGoogle Scholar
    5. OLAV IV, Operation of Large Vacuum Systems IV, Hsinchu.
    6. OLAV V, Operation of Large Vacuum Systems V, Hamburg.

    Vacuum Systems and Cryogenics

    1. O. Gröbner, Overview of the LHC Vacuum System. Vacuum 60(1–2), 25–34 (2001)ADSCrossRefGoogle Scholar
    2. D. Trines, The HERA Cold Bore Vacuum System, Technical Report DESY HERA 85-22 (1985)Google Scholar
    3. D. Trines, Das Strahlrohrvakuumsystem des HERA-Protonenringes. Vak. Forsch. Prax. 4(2), 91–99 (1992). Scholar


    1. T. Tanaka, T. Hara, R. Tsuru, D. Iwaki, X. Marechal, T. Bizen, T. Seike, H. Kitamura, In-vacuum undulators, in Proceedings of the 27th International Free Electron Laser Conference 21–26 August 2005, Stanford, California, USA, 2005, p. 370, JACoW/eConf C0508213Google Scholar


    1. J. Falta, T. Möller, Forschung mit Synchrotronstrahlung: Eine Einführung in die Grundlagen und Anwendungen (Vieweg+Teubner Verlag, Wiesbaden, 2010)Google Scholar
    2. Franz (2004) Beamline front ends and optics Chapter 5, in PETRA III TDR [Balewski, 2004]Google Scholar
    3. U. Hahn, H.B. Peters, R. Röhlsberger, H. Schulte-Schrepping, The generic beamline concept of the PETRA III undulator beamlines. AIP Conf. Proc. 879, 539–542 (2007). Scholar
    4. J. Strachan, D.G. Clarke, Front ends at diamond, in Proceedings of EPAC 2006, Edinburgh, Scotland, 2006, p. 3335 ffGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.MVS Machine Vacuum SystemsDeutsches Elektronen-Synchrotron DESYHamburgGermany

Personalised recommendations