Encyclopedia of Molecular Pharmacology

Living Edition
| Editors: Stefan Offermanns, Walter Rosenthal

Dopamine System

  • Nataliia Katolikova
  • Raul R. GainetdinovEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-030-21573-6_51-1



Dopamine (dopaminergic) system plays an important role in central neural system, taking part in regulating motor control, executive functions, motivation, reinforcement, reward, sleep, feeding, attention, cognitive functions, olfaction, vision, hormonal regulation, and outside of central neural system in sympathetic regulation and penile erection. Dopamine as well influences immune, gastrointestinal, and cardiovascular systems and renal function.

Basic Characteristics

Dopaminergic Pathways

Dopaminergic neurons are a heterogenic group of cells, most of which are localized in mesencephalon and diencephalon, and a small amount is located in bulbus olfactorius. In mesencephalon cells are localized in three groups – in substantia nigra pars compacta (SN), in the ventral tegmental area (VTA), and in the retrorubral field (RRF). The axons of...

This is a preview of subscription content, log in to check access.


  1. Abi-Dargham A, van de Giessen E, Slifstein M et al (2009) Baseline and amphetamine-stimulated dopamine activity are related in drug-naïve schizophrenic subjects. Biol Psychiatry 65:1091–1093.  https://doi.org/10.1016/j.biopsych.2008.12.007CrossRefPubMedGoogle Scholar
  2. Ashok AH, Marques TR, Jauhar S et al (2017) The dopamine hypothesis of bipolar affective disorder: the state of the art and implications for treatment. Mol Psychiatry 22:666–679.  https://doi.org/10.1038/mp.2017.16CrossRefPubMedPubMedCentralGoogle Scholar
  3. Beaulieu J-M, Gainetdinov RR (2011) The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 63:182–217.  https://doi.org/10.1124/pr.110.002642CrossRefPubMedGoogle Scholar
  4. Beaulieu J-M, Espinoza S, Gainetdinov RR (2015) Dopamine receptors – IUPHAR review 13. Br J Pharmacol 172:1.  https://doi.org/10.1111/BPH.12906CrossRefPubMedGoogle Scholar
  5. Blum K, Chen AL-C, Braverman ER et al (2008) Attention-deficit-hyperactivity disorder and reward deficiency syndrome. Neuropsychiatr Dis Treat 4:893–918.  https://doi.org/10.2147/ndt.s2627CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cahill E, Pascoli V, Trifilieff P et al (2014) D1R/GluN1 complexes in the striatum integrate dopamine and glutamate signalling to control synaptic plasticity and cocaine-induced responses. Mol Psychiatry 19:1295–1304.  https://doi.org/10.1038/mp.2014.73CrossRefPubMedPubMedCentralGoogle Scholar
  7. Calabresi P, Picconi B, Tozzi A et al (2014) Direct and indirect pathways of basal ganglia: a critical reappraisal. Nat Neurosci 17:1022–1030.  https://doi.org/10.1038/nn.3743CrossRefPubMedGoogle Scholar
  8. Chen JY, Wang EA, Cepeda C, Levine MS (2013) Dopamine imbalance in Huntington’s disease: a mechanism for the lack of behavioral flexibility. Front Neurosci 7:114.  https://doi.org/10.3389/fnins.2013.00114CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cousins DA, Butts K, Young AH (2009) The role of dopamine in bipolar disorder. Bipolar Disord 11:787–806.  https://doi.org/10.1111/j.1399-5618.2009.00760.xCrossRefPubMedGoogle Scholar
  10. Daubner SC, Le T, Wang S (2011) Tyrosine hydroxylase and regulation of dopamine synthesis. Arch Biochem Biophys 508:1–12.  https://doi.org/10.1016/j.abb.2010.12.017CrossRefPubMedGoogle Scholar
  11. Ferguson SSG (2001) Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. Pharmacol Rev 53(1):1–24PubMedGoogle Scholar
  12. German CL, Baladi MG, McFadden LM et al (2015) Regulation of the dopamine and vesicular monoamine transporters: pharmacological targets and implications for disease. Pharmacol Rev 67:1005–1024.  https://doi.org/10.1124/pr.114.010397CrossRefPubMedPubMedCentralGoogle Scholar
  13. Greengard P (2001) The neurobiology of slow synaptic transmission. Science 294(5544):1024–1030CrossRefGoogle Scholar
  14. Hutchinson JA, Shanware NP, Chang H, Tibbetts RS (2011) Regulation of ribosomal protein S6 phosphorylation by casein kinase 1 and protein phosphatase 1. J Biol Chem 286:8688–8696.  https://doi.org/10.1074/jbc.M110.141754CrossRefPubMedPubMedCentralGoogle Scholar
  15. Kamato D, Thach L, Bernard R et al (2015) Structure, function, pharmacology, and therapeutic potential of the G protein, Gα/q,11. Front Cardiovasc Med 2:14.  https://doi.org/10.3389/fcvm.2015.00014CrossRefPubMedPubMedCentralGoogle Scholar
  16. Klein MO, Battagello DS, Cardoso AR et al (2019) Dopamine: functions, signaling, and association with neurological diseases. Cell Mol Neurobiol 39:31–59CrossRefGoogle Scholar
  17. Montarolo F, Martire S, Perga S et al (2019) NURR1 deficiency is associated to ADHD-like phenotypes in mice. Transl Psychiatry 9:207.  https://doi.org/10.1038/s41398-019-0544-0CrossRefPubMedPubMedCentralGoogle Scholar
  18. Sahin B, Hawasli AH, Greene RW et al (2008) Negative regulation of cyclin-dependent kinase 5 targets by protein kinase C. Eur J Pharmacol 581:270–275.  https://doi.org/10.1016/j.ejphar.2007.11.061CrossRefPubMedPubMedCentralGoogle Scholar
  19. Saura CA, Valero J (2011) The role of CREB signaling in Alzheimer’s disease and other cognitive disorders. Rev Neurosci 22:153–169.  https://doi.org/10.1515/RNS.2011.018CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg New York 2020

Authors and Affiliations

  1. 1.Institute of Translational BiomedicineSaint-Petersburg State UniversitySaint-PetersburgRussia