Advertisement

Electronic Beam-Scanning Technology for Small Satellite Communication Systems and Their Future Development

  • Safieddin (Ali) Safavi-NaeiniEmail author
  • Arunas G. Slekys
Living reference work entry
  • 4 Downloads

Abstract

The rapid development of a new antenna technology known as electronic beam-scanning systems, phased arrays, flat panels, and other phraseologies has opened up new vistas for antenna solutions of twenty-first-century satellite communications. This technology has the potential to be applied in the deployment and use of MEO, LEO, and small satellite constellations, in addition to supporting ground systems of GEO/MEO/LEO satellite networks. In particular, it holds the promise of expanding the addressable market for mobility applications of satellite networks by virtue of reducing size, weight, power, and cost compared to mechanically steered antennas. Development of this technology for space antennas and ground systems is still evolving. This chapter describes the nature of electronic beam-scanning antennas, the technology challenges, their applications, and state-of-the-art solutions.

Keywords

Electronic beam-scanning antennas GEO satellite systems Integrated Space and Terrestrial Networks (ISTN) Low earth orbit (LEO) satellites Medium earth orbit (MEO) satellites Modular and scalable phased-array architecture 

References

  1. M.T. Ababneh, C. Tarau, W.G. Anderson, High temperature lightweight heat pipes for solid-state power amplifier (SSPA) thermal management, in 2019 18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm) (IEEE, 2019), pp. 656–665Google Scholar
  2. A.S. Abdellatif, M. Faraji-Dana, N. Ranjkesh, A. Taeb, M. Fahimnia, S. Gigoyan, S. Safavi-Naeini, Low loss, wideband, and compact CPW-based phase shifter for millimeter-wave applications. IEEE Trans. Microwave Theory Tech. 62(12), 3403–3413 (2014)CrossRefGoogle Scholar
  3. W.M. Abdel-Wahab, D. Busuioc, S. Safavi-Naeini, Millimeter-wave high radiation efficiency planar waveguide series-fed dielectric resonator antenna (DRA) array: Analysis, design, and measurements. IEEE Trans. Antennas Propag. 59(8), 2834–2843 (2011)CrossRefGoogle Scholar
  4. W.M. Abdel-Wahab, Y. Wang, S. Safavi-Naeini, SIW hybrid feeding network-integrated 2-D DRA array: simulations and experiments. IEEE Antennas Wirel. Propag. Lett. 15, 548–551 (2015)CrossRefGoogle Scholar
  5. W.M. Abdel-Wahab, H. Al-Saedi, E.H.M. Alian, M. Raeis-Zadeh, A. Ehsandar, A. Palizban, S. Safavi-Naeini, A modular architecture for wide scan angle phased array antenna for K/Ka mobile SATCOM, in 2019 IEEE MTT-S International Microwave Symposium (IMS) (IEEE, 2019), pp. 1076–1079)Google Scholar
  6. H. Al-Saedi, S. Gigoyan, W.M. Abdel-Wahab, A. Palizban, A. Taeb, A. Ehsandar, S. Safavi-Naeini, A low-cost Ka-band circularly polarized passive phased-array antenna for mobile satellite applications. IEEE Trans. Antennas Propag. 67(1), 221–231 (2018)CrossRefGoogle Scholar
  7. L. Baggen, M. Böttcher, S. Otto, O. Litschke, R. Gieron, S. Holzwarth, Phased array technology by IMST: a comprehensive overview, in 2013 IEEE International Symposium on Phased Array Systems and Technology (IEEE, 2013), pp. 21–28Google Scholar
  8. H. Bolandhemmat, M. Fakharzadeh, P. Mousavi, S.H. Jamali, G.Z. Rafi, S. Safavi-Naeini, Active stabilization of vehicle-mounted phased-array antennas. IEEE Trans. Veh. Technol. 58(6), 2638–2650 (2009)CrossRefGoogle Scholar
  9. A. Chakraborty, B. Gupta, Paradigm phase shift: RF MEMS phase shifters: an overview. IEEE Microw. Mag. 18(1), 22–41 (2016)CrossRefGoogle Scholar
  10. M. Chen, A.V. Pham, C. Kapusta, J. Iannotti, W. Kornrumpf, N. Evers, … N. Karabudak, Development of multilayer organic modules for hermetic packaging of RF MEMS circuits, in 2006 IEEE MTT-S International Microwave Symposium Digest (IEEE, 2006), pp. 271–274Google Scholar
  11. R. Chirikov, P. Rocca, L. Manica, S. Santarelli, R.J. Mailloux, A. Massa, Innovative GA-based strategy for polyomino tiling in phased array design. In 2013 7th European Conference on Antennas and Propagation (EuCAP) (IEEE, 2013), pp. 2216–2219Google Scholar
  12. E. Cohen, M. Ruberto, M. Cohen, O. Degani, S. Ravid, D. Ritter, A CMOS bidirectional 32-element phased-array transceiver at 60 GHz with LTCC antenna. IEEE Trans. Microwave Theory Tech. 61(3), 1359–1375 (2013)CrossRefGoogle Scholar
  13. D. Ehyaie, A. Mortazawi, A new approach to design low cost, low complexity phased arrays, in 2010 IEEE MTT-S International Microwave Symposium (IEEE, 2010), pp. 1270–1273Google Scholar
  14. F. Ellinger, U. Mayer, M. Wickert, N. Joram, J. Wagner, R. Eickhoff, … R. Kraemer, Integrated adjustable phase shifters. IEEE Microw. Mag. 11(6), 97–108 (2010)CrossRefGoogle Scholar
  15. A.O. Fadamiro, O.J. Famoriji, R. Kashif, M.S. Ali, F. Lin, An improved calibration algorithm for active phased array antenna, in 2018 IEEE International Conference on Computational Electromagnetics (ICCEM) (IEEE, 2018), pp. 1–3Google Scholar
  16. M. Fakharzadeh, S.H. Jamali, P. Mousavi, S. Safavi-Naeini, Fast beamforming for mobile satellite receiver phased arrays: Theory and experiment. IEEE Trans. Antennas Propag. 57(6), 1645–1654 (2009)CrossRefGoogle Scholar
  17. S. Gao, Y. Rahmat-Samii, R.E. Hodges, X.X. Yang, Advanced antennas for small satellites. Proc. IEEE 106(3), 391–403 (2018)CrossRefGoogle Scholar
  18. GILAT, in RaySat EagleRay 5000, Pioneering Ka-band SOTM for Defense and Security Applications (GILAT, 2014)Google Scholar
  19. X. Gu, A. Valdes-Garcia, A. Natarajan, B. Sadhu, D. Liu, S.K. Reynolds, W-band scalable phased arrays for imaging and communications. IEEE Commun. Mag. 53(4), 196–204 (2015)CrossRefGoogle Scholar
  20. S. Han, I. Chih-Lin, Z. Xu, C. Rowell, Large-scale antenna systems with hybrid analog and digital beamforming for millimeter wave 5G. IEEE Commun. Mag. 53(1), 186–194 (2015)CrossRefGoogle Scholar
  21. H. Hashemi, X. Guan, A. Komijani, A. Hajimiri, A 24-GHz SiGe phased-array receiver-LO phase-shifting approach. IEEE Trans. Microwave Theory Tech. 53(2), 614–626 (2005)CrossRefGoogle Scholar
  22. R.L. Haupt, Optimized weighting of uniform subarrays of unequal sizes. IEEE Trans. Antennas Propag. 55(4), 1207–1210 (2007)CrossRefGoogle Scholar
  23. W.H. Henderson, W.W. Milroy, Wireless communication applications of the continuous transverse stub (CTS) array at microwave and millimeter wave frequencies, in IEEE/ACES International Conference on Wireless Communications and Applied Computational Electromagnetics, 2005 (IEEE, 2005), pp. 253–256Google Scholar
  24. A. Hoehn, P.B. Hager, J.T. Harder, Design characterization of an electronic steerable Ka-band antenna using liquid crystal phase shifters, in 2013 IEEE Aerospace Conference (IEEE, 2013), pp. 1–14Google Scholar
  25. W. Hong, K.H. Baek, Y. Lee, Y. Kim, S.T. Ko, Study and prototyping of practically large-scale mmWave antenna systems for 5G cellular devices. IEEE Commun. Mag. 52(9), 63–69 (2014)CrossRefGoogle Scholar
  26. X. Huang, J.A. Zhang, R.P. Liu, Y.J. Guo, L. Hanzo, Airplane-aided integrated networking for 6G wireless: Will it work? IEEE Veh. Technol. Mag. 14(3), 84–91 (2019)CrossRefGoogle Scholar
  27. W.A. Imbriale, S.S. Gao, L. Boccia, Space Antenna Handbook (Wiley, New York, 2012)CrossRefGoogle Scholar
  28. S. Jeon, Y.J. Wang, H. Wang, F. Bohn, A. Natarajan, A. Babakhani, A. Hajimiri, A scalable 6-to-18 GHz concurrent dual-band quad-beam phased-array receiver in CMOS. IEEE J. Solid State Circuits 43(12), 2660–2673 (2008)CrossRefGoogle Scholar
  29. M.C. Johnson, S.L. Brunton, N.B. Kundtz, J.N. Kutz, Sidelobe canceling for reconfigurable holographic metamaterial antenna. IEEE Trans. Antennas Propag. 63(4), 1881–1886 (2015)MathSciNetCrossRefGoogle Scholar
  30. S.Y. Kim, O. Inac, C.Y. Kim, D. Shin, G.M. Rebeiz, A 76–84-GHz 16-element phased-array receiver with a chip-level built-in self-test system. IEEE Trans. Microwave Theory Tech. 61(8), 3083–3098 (2013)CrossRefGoogle Scholar
  31. J. King, J. Ness, G. Bonin, M. Brett, D. Faber, Nanosat Ka-band communications-A paradigm shift in small satellite data throughput (2012), https://digitalcommons.usu.edu/smallsat/2012/all2012/54/
  32. D. Kissinger, B. Laemmle, L. Maurer, R. Weigel, Integrated test for silicon front ends. IEEE Microw. Mag. 11(3), 87–94 (2010)CrossRefGoogle Scholar
  33. K.J. Koh, G.M. Rebeiz, An X-and Ku-band 8-element phased-Array receiver in 0.18-μm SiGe BiCMOS technology. IEEE J. Solid State Circuits 43(6), 1360–1371 (2008)CrossRefGoogle Scholar
  34. Y. Li, K.M. Luk, 60-GHz substrate integrated waveguide fed cavity-backed aperture-coupled microstrip patch antenna arrays. IEEE Trans. Antennas Propag. 63(3), 1075–1085 (2015)MathSciNetCrossRefGoogle Scholar
  35. E. Lier, R. Melcher, A modular and lightweight multibeam active phased receiving array for satellite applications: Design and ground testing. IEEE Antennas Propag. Mag. 51(1), 80–90 (2009)CrossRefGoogle Scholar
  36. E. Lier, D. Purdy, J. Ashe, G. Kautz, An on-board integrated beam conditioning system for active phased array satellite antennas, in Proceedings 2000 IEEE International Conference on Phased Array Systems and Technology (Cat. No. 00TH8510) (IEEE, 2000), pp. 509–512Google Scholar
  37. O. Litschke, W. Simon, S. Holzwarth, A 30 GHz highly integrated LTCC antenna element for digital beam forming arrays, in 2005 IEEE Antennas and Propagation Society International Symposium, vol 3 (IEEE, 2005), pp. 297–300Google Scholar
  38. K.K.W. Low, A. Nafe, S. Zihir, T. Kanar, G.M.A Rebeiz, Scalable circularly-polarized 256-element Ka-band phased-array SATCOM transmitter with±60 beam scanning and 34.5 dBW EIRP, in 2019 IEEE MTT-S International Microwave Symposium (IMS) (IEEE, 2019), pp. 1064–1067Google Scholar
  39. E. Meniconi, V. Ziegler, R. Sorrentino, T. Chaloun, 3D integration technologies for a planar dual band active array in Ka-band, in 2013 European Microwave Conference (IEEE, 2013), pp. 215–218Google Scholar
  40. P. Mousavi, M. Fakharzadeh, S.H. Jamali, K. Narimani, M. Hossu, H. Bolandhemmat, … S. Safavi-Naeini, A low-cost ultra low profile phased array system for mobile satellite reception using zero-knowledge beamforming algorithm. IEEE Trans. Antennas Propag. 56(12), 3667–3679 (2008)CrossRefGoogle Scholar
  41. A. Natarajan, S. K. Reynolds, M.D. Tsai, S.T. Nicolson, J.H.C. Zhan, D.G. Kam, … B.A. Floyd, A fully-integrated 16-element phased-array receiver in SiGe BiCMOS for 60-GHz communications. IEEE J. Solid State Circuits 46(5), 1059–1075 (2011)CrossRefGoogle Scholar
  42. Northern Sky Research, It’s a mobile world for flat panel antennas (2017). [Online]. http://www.nsr.com/news-resources/nsr-in-the-press/nsr-press-releases/its-a-mobile-world-for-flat-panel-antennas/
  43. Phasor Soluions, COMMS on the Move (2015)Google Scholar
  44. Y. Rahmat-Samii, V. Manohar, J.M. Kovitz, For satellites, think small, dream big: A review of recent antenna developments for CubeSats. IEEE Antennas Propag. Mag. 59(2), 22–30 (2017)CrossRefGoogle Scholar
  45. P. Rocca, R.J. Mailloux, G. Toso, GA-based optimization of irregular subarray layouts for wideband phased arrays design. IEEE Antennas Wirel. Propag. Lett. 14, 131–134 (2014)CrossRefGoogle Scholar
  46. W. Roh, J.Y. Seol, J. Park, B. Lee, J. Lee, Y. Kim, … F. Aryanfar, Millimeter-wave beamforming as an enabling technology for 5G cellular communications: theoretical feasibility and prototype results. IEEE Commun. Mag. 52(2), 106–113 (2014)CrossRefGoogle Scholar
  47. H. Schippers, J. Verpoorte, P. Jorna, A. Hulzinga, A. Meijerink, C. Roeloffzen, … M. Wintels, Conformal phased array with beam forming for airborne satellite communication, in 2008 International ITG Workshop on Smart Antennas (IEEE, 2008), pp. 343–350Google Scholar
  48. S.D. Silverstein, Application of orthogonal codes to the calibration of active phased array antennas for communication satellites. IEEE Trans. Signal Process. 45(1), 206–218 (1997)CrossRefGoogle Scholar
  49. S. Strunck, A. Gaebler, O.H. Karabey, A. Heunisch, B. Schulz, T. Rabe, … R. Jakoby, Reliability study of a tunable Ka-band SIW-phase shifter based on liquid crystal in LTCC-technology. Int. J. Microw. Wirel. Technol. 7(5), 521–527 (2015)CrossRefGoogle Scholar
  50. A.I. Sulyman, A.T. Nassar, M.K. Samimi, G.R. MacCartney, T.S. Rappaport, A. Alsanie, Radio propagation path loss models for 5G cellular networks in the 28 GHz and 38 GHz millimeter-wave bands. IEEE Commun. Mag. 52(9), 78–86 (2014)CrossRefGoogle Scholar
  51. F. Tabarani, L. Boccia, T. Purtova, A. Shamsafar, H. Schumacher, G. Amendola, 0.25-μm BiCMOS system-on-Chip for K-/Ka-band satellite communication transmit–receive active phased arrays. IEEE Trans. Microw. Theory Tech. 66(5), 2325–2339 (2018)CrossRefGoogle Scholar
  52. ThinKom, ThinAir Falcon-Ka-2517, Office-in-the-Air-Connectivity (ThinKom Global Connectivity, 2014)Google Scholar
  53. S. Vaccaro, D.L. del Río, R.T. Sánchez, R. Baggen, Low cost phased array for mobile Ku-band satellite terminal, in Proceedings of the Fourth European Conference on Antennas and Propagation (IEEE, 2010), pp. 1–5Google Scholar
  54. J. Xu, Z.N. Chen, X. Qing, W. Hong, Bandwidth enhancement for a 60 GHz substrate integrated waveguide fed cavity array antenna on LTCC. IEEE Trans. Antennas Propag. 59(3), 826–832 (2010)CrossRefGoogle Scholar
  55. J.G. Yang, K. Yang, Ka-band 5-bit MMIC phase shifter using InGaAs PIN switching diodes. IEEE Microwave Wireless Compon Lett. 21(3), 151–153 (2011)CrossRefGoogle Scholar
  56. X. Yi, T.X. Huang, R.A. Minasian, Photonic beamforming based on programmable phase shifters with amplitude and phase control. IEEE Photon. Technol. Lett. 23(18), 1286–1288 (2011)CrossRefGoogle Scholar
  57. Y. Zhang, S. Pan, Broadband microwave signal processing enabled by polarization-based photonic microwave phase shifters. IEEE J. Quantum Electron. 54(4), 1–12 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Safieddin (Ali) Safavi-Naeini
    • 1
    Email author
  • Arunas G. Slekys
    • 2
  1. 1.Department of Electrical and Computer EngineeringUniversity of WaterlooWaterlooCanada
  2. 2.Corporate MarketingHughes Network SystemsGermantownUSA

Personalised recommendations