Encyclopedia of Mathematics Education

2020 Edition
| Editors: Stephen Lerman

Registers of Semiotic Representation

  • Raymond DuvalEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-030-15789-0_100033
  • 4 Downloads

Introduction

Registers are defined as semiotic systems which fulfill a specific cognitive function: transforming any semiotic representations they give the means of producing into other ones for getting new information or new knowledge, which is not the case of all semiotic systems used in mathematical activity, for instance gestures. Mathematics requires semiotic systems that fulfill the specific transformation function analyzed by Frege (1892). It consists of substituting one semiotic representation b for another a, if both representations denote the same object, such as for example in calculations. Registers are key tools for analyzing the cognitive processes of mathematical thinking, because they allow separating two kinds of substitution whose cognitive requirements are distinct: between two representations from two different semiotic systems and between two representations within the same semiotic system. The former is called conversion and the latter treatment.

The power of...

Keywords

Awareness Conversion Meaning unit Object Recognition Register Semiotic representation Substitution Treatment 
This is a preview of subscription content, log in to check access.

References

  1. Drouhard J-P (1992) Les écritures symboliques de l’algèbre élémentaire. Thèse de Doctorat, Paris VIIGoogle Scholar
  2. Duval R (1988) Graphiques et Equations: l’articulation de deux registres. Ann Didact Sci Cogn 1:235–255Google Scholar
  3. Duval R (1995) Sémiosis et pensée humaine: Regitres sémiotiques et apprentissages intellectuels. Peter Lang, Bern. (2017) Semiosis y pensamento humano. Universidad del Valle, CaliGoogle Scholar
  4. Duval R (1996) Les représentations graphiques: fonctionnement et conditions de leur apprentissage. In: Antibi A (ed) Actes de la 46ème Rencontre Internationale de la CIEAEM, vol 1. Université Paul Sabatier, Toulouse, pp 3–15Google Scholar
  5. Duval R (2007) Cognitive functioning and the understanding of the mathematical processes of proof. In: Boero P (ed) Theorems in schools. Sense, Rotterdam/Taipei, pp 137–161Google Scholar
  6. Duval R (2011) Preuves et preuve: les expériences des types de nécessité qui fondent la connaissance scientifique. In: Baillé J (ed) Du mot au concept. Preuve. PUG, Grenoble, pp 33–68, 147–182Google Scholar
  7. Duval R (2014) Ruptures et oublis entre manipuler, voir, dire et écrire. Histoire d’une séquence d’activités. In: Brandt CF, Moretti MT (eds) As Contribuiçoes da Teoria das Representaçoes Sémioticas Para o Ensino e Perquisa na Educaçao Matematica. Ijuí, Ed. Unijui, pp 227–251Google Scholar
  8. Duval R (2015) Figures et visualisation géométrique: “voir” en géométrie. In: Lim G (ed) Du mot au concept. Figure. PUG, Grenoble, pp 147–182Google Scholar
  9. Duval R (2017) Understanding the mathematical way of thinking – the registers of semiotic representations. Springer International Publishing AG 2017Google Scholar
  10. Duval R, Godin M (2005) Les changements de regard nécessaires sur les figures. Grand N 76:7–27Google Scholar
  11. Duval R, Campos TMM, Barros LG, Diaz MM (2015) Introduzir a álgebra no ensino: Qual é o objetivo e como fazer isso? Proem Editora, São PauloGoogle Scholar
  12. Egret MA, Duval R (1989) Comment une classe de quatrième a pris conscience de ce qu’est une démarche de démonstration. Ann Didact Sci Cogn 2:65–89Google Scholar
  13. Frege G (1892) Über Sinn und Bedeutung (“Sense und denotation”, “Sens et référence”). Z Philos Philos Kritik 100:22–50Google Scholar
  14. Iori M (2018) Teachers’ awareness of the semio-cognitive dimension of learning mathematics. Educ Stud Math 98:95–113CrossRefGoogle Scholar
  15. Mithahal J (2010) Déconstruction instrumentale et déconstruction dimensionnelle dans le context de la géométrie dynamique tridimensionnelle. Doctoral thesis, Université de Grenoble. https://tel.archives-ouvertes.fr/tel-00590941/PDF/these_mithalal.pdf. Accessed 25 June 2010
  16. Panizza M (2018) Las transformaciones semióticas en los procesos de definición de objetos matemáticos. Doctoral thesis, Universidad Nacional, CórdobaGoogle Scholar
  17. Schoenfeld AH (1986) On having and using geometric knowledge. In: Hiebert J (ed) Conceptual and procedural knowledge. The case of mathematics. Erlbaum Associates, New York, pp 225–264Google Scholar
  18. Serfati M (2010) Symbolic revolution, scientific revolution: mathematical and philosophical aspects. In: Heeffer A, Van Dyck M (eds) Philosophical aspects of symbolic reasoning in early modern mathematics. Studies in logic, vol 26. College Publications, London, pp 105–124Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.University ULCODunkerqueFrance

Section editors and affiliations

  • Michéle Artigue
    • 1
  1. 1.Laboratoire de Didactique André Revuz (EA4434)Université Paris-DiderotParisFrance