Advertisement

Aerobic Hydrocarbon-Degrading Bacteroidetes

  • KaeKyoung Kwon
  • Yong Min Kwon
  • Sang-Jin KimEmail author
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)

Abstract

Bacteroidetes (Bacteroidaeota) is composed of six classes and is widely distributed in natural environments. The contribution of this phylum to hydrocarbon degradation in the Gulf of Mexico during the Deepwater Horizon oil spill was estimated by DNA stable-isotope probing (SIP) and metagenomic analysis. An approximation across different studies suggests that about 3% of hydrocarbon-degrading bacteria were from the phylum Bacteroidetes. The number of isolates from the Bacteroidetes that can degrade hydrocarbons has been increasingly reported during the last decade. In this chapter, the characteristics of Arenibacter algicola, Bergeyella sp. RR7, Carboxylicivirga flava, Chryseobacterium hungaricum, Echinicola sp. SWSAL15, Mesoflavibacter sp. ITB11, Myroides pelagicus, Olivibacter oleidegradans, Olleya sp. ITB9, Parapedobacter pyrenivorans, Pedobacter cryoconitis, Yeosuana aromativorans, and an unidentified Flavobacterium sp. are described.

References

  1. Al-Awadhi H, Al-Mailem D, Dashti N et al (2012) Indigenous hydrocarbon-utilizing bacterioflora in oil-polluted habitats in Kuwait, two decades after the greatest man-made oil spill. Arch Microbiol 194:689–705CrossRefPubMedGoogle Scholar
  2. Al-Mailem D, Kansour M, Radwan S (2015) Bacterial communities associated with biofouling materials used in bench-scale hydrocarbon bioremediation. Environ Sci Pollut Res 22:3570–3585CrossRefGoogle Scholar
  3. Alonso-Gutiérrez J, Costa MM, Figueras A et al (2008) Alcanivorax strain detected among the cultured bacterial community from sediments affected by the ‘Prestige’ oil spill. Mar Ecol Prog Ser 362:25–36CrossRefGoogle Scholar
  4. Bauer M, Kube M, Teeling H et al (2006) Whole genome analysis of the marine BacteroidetesGramella forsetii’ reveals adaptations to degradation of polymeric organic matter. Environ Microbiol 8:2201–2213CrossRefPubMedGoogle Scholar
  5. Castle DM, Montgomery MT, Kirchnab DL (2006) Effects of naphthalene on microbial community composition in the Delaware estuary. FEMS Microbiol Ecol 56:55–63CrossRefPubMedGoogle Scholar
  6. Eilers H, Pernthaler J, Glöckner FO, Amann R (2000) Culturability and in situ abundance of pelagic bacteria from the North Sea. Appl Environ Microbiol 66:3044–3051CrossRefPubMedPubMedCentralGoogle Scholar
  7. Guo W, Li D, Tao Y et al (2008) Isolation and description of a stable carbazole-degrading microbial consortium consisting of Chryseobacterium sp. NCY and Achromobacter sp. NCW. Curr Microbiol 57:251–257CrossRefPubMedGoogle Scholar
  8. Gutierrez T, Rhodes G, Mishamandani S et al (2014) Polycyclic aromatic hydrocarbon degradation of phytoplankton associated Arenibacter spp. and description of Arenibacter algicola sp. nov., an aromatic hydrocarbon-degrading bacterium. Appl Environ Microbiol 80:618–628CrossRefPubMedPubMedCentralGoogle Scholar
  9. Hahnke RL, Meier-Kolthoff JP, García-López M et al (2016) Genome-based taxonomic classification of Bacteroidetes. Front Microbiol 7:2003CrossRefPubMedPubMedCentralGoogle Scholar
  10. Handley KM, Piceno YM, Hu P et al (2017) Metabolic and spatio-taxonomic response of uncultivated seafloor bacteria following the Deepwater Horizon oil spill. ISME J 11:2569–2583CrossRefPubMedPubMedCentralGoogle Scholar
  11. Harayama S, Kasai Y, Hara A (2004) Microbial communities in oil-contaminated seawater. Curr Opin Biotechnol 15:205–214CrossRefPubMedGoogle Scholar
  12. Hou J, Liu W, Wang B et al (2015) PGPR enhanced phytoremediation of petroleum contaminated soil and rhizosphere microbial community response. Chemosphere 138:592–598CrossRefPubMedGoogle Scholar
  13. Jurelevicius D, Alvarez VM, Marques JM et al (2013) Bacterial community response to petroleum hydrocarbon amendments in freshwater, marine, and hypersaline water-containing microcosms. Appl Environ Microbiol 79:5927–5935CrossRefPubMedPubMedCentralGoogle Scholar
  14. Kappell AD, Wei Y, Newton RJ et al (2014) The polycyclic aromatic hydrocarbon degradation potential of Gulf of Mexico native coastal microbial communities after the Deepwater Horizon oil spill. Front Microbiol 5:205CrossRefPubMedPubMedCentralGoogle Scholar
  15. Kim BS, Oh H-Y, Kang H et al (2004) Remarkable bacterial diversity in the tidal flat sediment as revealed by 16S rDNA analysis. J Microbiol Biotechnol 14:205–211Google Scholar
  16. Kirchman DL (2002) The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMS Microbiol Ecol 39:91–100PubMedGoogle Scholar
  17. Koo H (2013) Microbial responses to MC252 in Gulf of Mexico sediments using bTEFAP and bioinformatics tools. Master degree thesis, University of Alabama, p 89Google Scholar
  18. Kwon KK, Lee HS, Jung HB, Kim S-J (2006) Yeosuana aromativorans gen. nov., sp. nov., a mesophilic marine bacterium belonging to the family Flavobacteriaceae, isolated from estuarine sediment of the South Sea, Korea. Int J Syst Evol Microbiol 56:727–732CrossRefPubMedGoogle Scholar
  19. Li H, Zhang X-L, Ma X-Y et al (2012) Biodegradation of benzene homologues in contaminated sediment of the East China Sea. Bioresour Technol 124:129–136CrossRefPubMedGoogle Scholar
  20. Liu Z, Liu J (2013) Evaluating bacterial community structures in oil collected from the sea surface and sediment in the northern Gulf of Mexico after the Deepwater Horizon oil spill. MicrobiologyOpen 2:492–504CrossRefPubMedPubMedCentralGoogle Scholar
  21. Lladó A, Solanas AM, de Lapuente J et al (2012) A diversified approach to evaluate biostimulation and bioaugmentation strategies for heavy-oil-contaminated soil. Sci Total Environ 435(436):262–269CrossRefPubMedGoogle Scholar
  22. Maneerat S, Bamba T, Harada K et al (2006) A novel crude oil emulsifier excreted in the culture supernatant of a marine bacterium, Myroides sp. strain SM1. Appl Microbiol Biotechnol 70:254–259CrossRefPubMedGoogle Scholar
  23. Margesin R, Spröer C, Schumann P, Schinner F (2003) Pedobacter cryoconitis sp. nov., a facultative psychrophile from alpine glacier cryoconite. Int J Syst Evol Microbiol 53:1291–1296CrossRefPubMedGoogle Scholar
  24. Munoz R, Rosselló-Móra R, Amann R (2016) Revised phylogeny of Bacteroidetes and proposal of sixteen new taxa and two new combinations including Rhodothermaeota phyl. nov. Syst Appl Microbiol 39:281–296CrossRefPubMedGoogle Scholar
  25. Okai M, Kihara I, Yokoyama Y et al (2015) Isolation and characterization of benzo[a]pyrene-degrading bacteria from the Tokyo Bay area and Tama River in Japan. FEMS Microbiol Lett 362:fnv143CrossRefPubMedGoogle Scholar
  26. Oren A, da Costa MS, Garrity GM et al (2015) Proposal to include the rank of phylum in the international code of nomenclature of prokaryotes. Int J Syst Evol Microbiol 65:4284–4287CrossRefPubMedGoogle Scholar
  27. Patra AK, Cho HH, Kwon YM et al (2016) Phylogenetic relationship between symbionts of tubeworm Lamellibrachia satsuma and the sediment microbial community in Kagoshima Bay. Ocean Sci J 51:317–332CrossRefGoogle Scholar
  28. Prince RC, Amande TJ, McGenity TJ (2018) Prokaryotic hydrocarbon degraders. In: McGenity TJ (ed) Taxonomy, genomics and ecophysiology of hydrocarbon-degrading microbes: handbook of hydrocarbon and lipid microbiology, 2nd edn. Springer, Cham.,  https://doi.org/10.1007/978-3-319-60053-6_15-1
  29. Ramadass K, Smith E, Palanisami T et al (2015) Evaluation of constraints in bioremediation of weathered hydrocarbon-contaminated arid soils through microcosm biopile study. Int J Environ Sci Technol 12:3597–3612CrossRefGoogle Scholar
  30. Redmond MC, Valentine DL (2012) Natural gas and temperature structured a microbial community response to the Deepwater Horizon oil spill. Proc Natl Acad Sci 109:20292–20297CrossRefPubMedGoogle Scholar
  31. Saul DJ, Aislabie JM, Brown CE et al (2005) Hydrocarbon contamination changes the bacterial diversity of soil from around Scott Base, Antarctica. FEMS Microbiol Ecol 53:141–155CrossRefPubMedGoogle Scholar
  32. Sauret C, Böttjer D, Talarmin A et al (2015) Top-down control of diesel-degrading prokaryotic communities. Microb Ecol 70:445–458CrossRefPubMedGoogle Scholar
  33. Sebők F, Cserháti M, Dobolyi C et al (2014) Survival of alkane-degrading microorganisms in biogas digestate compost in microcosm experiments. Appl Ecol Environ Res 12:947–958CrossRefGoogle Scholar
  34. Sherr K, Lunda T, Klose V et al (2012) Changes in bacterial communities from anaerobic digesters during petroleum hydrocarbon degradation. J Biotechnol 157:564–572CrossRefGoogle Scholar
  35. Stucki G, Alexander M (1987) Role of dissolution rate and solubility in biodegradation of aromatic compounds. Appl Microbiol Biotechnol 53:292–297Google Scholar
  36. Szabó I, Szoboszlay S, Kriszt B et al (2011) Olivibacter oleidegradans sp. nov., a hydrocarbon-degrading bacterium isolated from a biofilter clean-up facility on a hydrocarbon-contaminated site. Int J Syst Evol Microbiol 61:2861–2865CrossRefPubMedGoogle Scholar
  37. Szoboszlay S, Atzél B, Kukolya J et al (2008) Chryseobacterium hungaricum sp. nov., isolated from hydrocarbon-contaminated soil. Int J Syst Evol Microbiol 58:2748–2754CrossRefPubMedGoogle Scholar
  38. Thomas F, Hehemann JH, Rebuffet E et al (2011) Environmental and Gut Bacteroidetes: the food connection. Front Microbiol 2:93. (16 pp)CrossRefPubMedPubMedCentralGoogle Scholar
  39. Wang W, Zhong R, Shan D, Shao Z (2014) Indigenous oil-degrading bacteria in crude oil-contaminated seawater of the Yellow Sea, China. Appl Microbiol Biotechnol 98:7253–7269CrossRefPubMedGoogle Scholar
  40. Wang H, Qi C, Chen W et al (2016) Carboxylicivirga flava sp. nov., isolated from marine surface sediment. Int J Syst Evol Microbiol 66:5412–5416CrossRefPubMedGoogle Scholar
  41. Yetti E, Thontowi A, Yopi (2016) Polycyclic aromatic hydrocarbon degrading bacteria from the Indonesian Marine Environment. Biodiversitas 17:857–864CrossRefGoogle Scholar
  42. Yoon J, Maneerat S, Kawai F, Yokota A (2006) Myroides pelagicus sp. nov., isolated from seawater in Thailand. Int J Syst Evol Microbiol 56:1917–1920CrossRefPubMedGoogle Scholar
  43. Yuan J, Lai Q, Sun F, Zheng T, Shao Z (2015) The diversity of PAH-degrading bacteria in a deep-sea water column above the Southwest Indian Ridge. Front Microbiol 6:853PubMedPubMedCentralGoogle Scholar
  44. Yuste L, Corbella ME, Turiegano MJ et al (2000) Characterization of bacterial strains able to grow on high molecular mass residues from crude oil processing. FEMS Microbiol Ecol 32:69–75CrossRefPubMedGoogle Scholar
  45. Zettler ER, Mincer TJ, Amaral-Zettler LA (2013) Life in the “plastisphere”: microbial communities on plastic marine debris. Environ Sci Technol 47:7137–7146CrossRefPubMedGoogle Scholar
  46. Zhao J-K, Li X-M, Zhang M-J et al (2013) Parapedobacter pyrenivorans sp. nov., isolated from a pyrene-degrading microbial enrichment, and emended description of the genus Parapedobacter. Int J Syst Evol Microbiol 63:3994–3999CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • KaeKyoung Kwon
    • 1
    • 2
  • Yong Min Kwon
    • 3
  • Sang-Jin Kim
    • 1
    • 2
    • 3
    Email author
  1. 1.Marine Biotechnology Research CentreKorea Institute of Ocean Science and TechnologyBusanSouth Korea
  2. 2.Major of Applied Ocean Science, Korea University of Science and TechnologyDaejeonSouth Korea
  3. 3.National Marine Biodiversity Institute of KoreaSeocheonSouth Korea

Personalised recommendations