Advertisement

Marine, Aerobic Hydrocarbon-Degrading Gammaproteobacteria: The Family Alcanivoracaceae

  • Michail M. YakimovEmail author
  • Peter N. Golyshin
  • Francesca Crisafi
  • Renata Denaro
  • Laura Giuliano
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)

Abstract

The family Alcanivoracaceae contains the group of hydrocarbon-degrading bacteria that, due to their ability to use hydrocarbons as main carbon source, have been described as obligate hydrocarbonoclastic bacteria (OHCB). Currently, the family includes the validly published genera Alcanivorax and Ketobacter. Most family members are highly specialized in degrading linear and branched alkanes of different origin. They typically dominate marine environments suffering from oil contamination and, through their highly adapted metabolic capabilities, are extremely efficient in the cleanup of marine oil spills. In particular, according to the results of the genome sequence analyses of nine species, they are proficient at scavenging nutrients and microelements, especially iron. They produce biosurfactants and can form biofilms around oil droplets and at the oil–water interface. Recent studies, discussed in this chapter with emphasis on the sequencing surveys, have expanded our knowledge and understanding of the diversity of Alcanivoracaceae bacteria, their wide distribution in the natural marine and terrestrial environments (both oil-contaminated and noncontaminated), and their possible association with various marine invertebrates and microalgae.

References

  1. Bruns A, Berthe-Corti L (1999) Fundibacter jadensis gen. nov., sp. nov., a new slightly halophilic bacterium, isolated from intertidal sediment. Int J Syst Bacteriol 49:441–448CrossRefPubMedGoogle Scholar
  2. Coulon F, Chronoupolou P-M, Fahy A, Païssé S, Goñi-Urriza MS, Peperzak L, Acuña-Alvarez L, McKew BA, Brussard C, Underwood GJC, Timmis KN, Duran R, McGenity TJ (2012) Central role of dynamic tidal biofilms dominated by aerobic hydrocarbonoclastic bacteria and diatoms in the biodegradation of hydrocarbons in coastal mudflats. Appl Environ Microbiol 78:3638–3648CrossRefPubMedPubMedCentralGoogle Scholar
  3. De Souza MP, Amini A, Dojka MA, Pickering IJ, Dawson SC, Pace NR, Terry N (2001) Identification and characterization of bacteria in a selenium-contaminated hypersaline evaporation pond. Appl Environ Microbiol 67:3785–3794CrossRefPubMedPubMedCentralGoogle Scholar
  4. Denaro R, Crisafi F, Russo D, Genovese M, Messina E, Genovese L, Carbone M, Ciavatta ML, Ferrer M, Golyshin PN, Yakimov MM (2014) Alcanivorax borkumensis produces an extracellular siderophore in iron-limitation condition maintaining the hydrocarbon degradation efficiency. Mar Genomics 17:43–52CrossRefPubMedGoogle Scholar
  5. Deshmukh KB, Pathak AP, Karuppayil MS (2011) Bacterial diversity of Lonar soda lake of India. Indian J Microbiol 1:107–111CrossRefGoogle Scholar
  6. Fernández-Martínez J, Pujalte MJ, Garcia-Martinez J, Mata M, Garay E, Rodriguez-Valera F (2003) Description of Alcanivorax venustensis sp. nov. and reclassification of Fundibacter jadensis DSM 12178T (Bruns and Berthe-Corti 1999) as Alcanivorax jadensis comb. nov., members of the emended genus Alcanivorax. Int J Syst Evol Microbiol 53:331–338CrossRefPubMedGoogle Scholar
  7. Fu X, Lai Q, Dong C, Wang W, Shao Z (2018) Complete genome sequence of Alcanivorax xenomutans P40, an alkane-degrading bacterium isolated from deep seawater. Mar Genomics 38:1–4CrossRefGoogle Scholar
  8. GESAMP (2007) Estimates of oil entering the marine environment from sea-based activities. Journal Series GESAM Reports and Studies, N. 75, IMO Publisher, 96 ppGoogle Scholar
  9. Golyshin PN, Harayama S, Timmis KN, Yakimov MM (2005) Family Alcanivoraceae. In: Garrity GM (ed) Bergey’s manual of systematic bacteriology, 2nd edn. Springer, New York, pp 295–298Google Scholar
  10. Green DH, Llewellyn LE, Negri AP, Blackburn SI, Bolch CJ (2004) Phylogenetic and functional diversity of the cultivable bacteria community associated with the paralytic shellfish poisoning dinoflagellate Gymnodinium catenatum. FEMS Microbiol Ecol 3:345–357CrossRefGoogle Scholar
  11. Harayama S, Kasai Y, Hara A (2004) Microbial communities in oil-contaminated seawater. Curr Opin Biotech 15:205–214CrossRefPubMedGoogle Scholar
  12. Hassan HA, Rizk NMH, Hefnawy MA, Awad AM (2012) Isolation and characterization of halophilic aromatic and chloroaromatic degrader from Wadi El-Natrun Soda lakes. Life Sci J 9:1565–1570Google Scholar
  13. Head IM, Jones DM, Röling WF (2006) Marine microorganisms make a meal of oil. Nat Rev Microbiol 4:173–182CrossRefPubMedGoogle Scholar
  14. Holmes AJ, Tujula NA, Holley M, Contos A, James JM, Rogers P, Gillings MR (2001) Phylogenetic structure of unusual aquatic microbial formations in Nullarbor caves, Australia. Environ Microbiol 3:256–264CrossRefPubMedGoogle Scholar
  15. Joye SB, Kleindienst S, Gilbert JA, Handley KM, Weisenhorn P, Overholt WA, Kostka JE (2016) Responses of microbial communities to hydro-carbon exposures. Oceanography 23:136–149CrossRefGoogle Scholar
  16. Kem MP, Zane HK, Springer SD, Gauglitz JM, Butler A (2014) Amphiphilic siderophore production by oil-associating microbes. Metallomics 6:1150–1155CrossRefPubMedGoogle Scholar
  17. Kim S-H, Kim J-G, Jung M-Y, Kim S-J, Gwak J-H, Yu W-J, Roh SW, Kim Y-H, Rhee S-K (2018) Ketobacter alkanivorans gen. nov., sp. nov., an n-alkane-degrading bacterium isolated from seawater. Int J Syst Evol Microbiol 68:2258–2264CrossRefPubMedGoogle Scholar
  18. Kleinsteuber S, Riis V, Fetzer I, Harms H, Muller S (2006) Population dynamics within a microbial consortium during growth on diesel fuel in saline environments. Appl Environ Microbiol 5:3531–3542CrossRefGoogle Scholar
  19. Kwon KK, Oh JH, Yang S-H, Seo H-S, Lee J-H (2015) Alcanivorax gelatiniphagus sp. nov., a marine bacterium isolated from tidal flat sediments enriched with crude oil. Int J Syst Evol Microbiol 65:2204–2208Google Scholar
  20. Lai Q, Shao Z (2012a) Genome sequence of the alkane-degrading bacterium Alcanivorax hongdengensis type strain A-11-3. J Bacteriol 194:6972CrossRefPubMedPubMedCentralGoogle Scholar
  21. Lai Q, Shao Z (2012b) Genome sequence of an alkane-degrading bacterium, Alcanivorax pacificus type strain W11-5, isolated from deep sea sediment. J Bacteriol 194(24):6936CrossRefPubMedPubMedCentralGoogle Scholar
  22. Lai Q, Wang L, Liu Y, Fu Y, Zhong H, Wang B, Chen L, Wang J, Sun F, Shao Z (2011) Alcanivorax pacificus sp. nov., isolated from a deep-sea pyrene-degrading consortium. Int J Syst Evol Microbiol 61:1370–1374CrossRefPubMedGoogle Scholar
  23. Lai Q, Li W, Shao Z (2012) Complete genome sequence of Alcanivorax dieselolei type strain B5. J Bacteriol 194:6674CrossRefPubMedPubMedCentralGoogle Scholar
  24. Lai Q, Wang J, Gu L, Zheng T, Shao Z (2013) Alcanivorax marinus sp. nov., isolated from deep-sea water. Int J Syst Evol Microbiol 63:4428–4432CrossRefPubMedGoogle Scholar
  25. Lai Q, Zhou Z, Li G, Li G, Shao Z (2016) Alcanivorax nanhaiticus sp. nov., isolated from deep sea sediment. Int J Syst Evol Microbiol 66:3651–3655CrossRefPubMedGoogle Scholar
  26. Liu C, Shao Z (2005) Alcanivorax dieselolei sp. nov., a novel alkane-degrading bacterium isolated from sea water and deep-sea sediment. Int J Syst Evol Microbiol 55:1181–1186Google Scholar
  27. Liu CL, Wang WP, Wu YH, Zhou ZW, Lai QL, Shao ZZ (2011) Multiple alkane hydroxylase systems in a marine alkane degrader, Alcanivorax dieselolei B-5. Environ Microbiol 13:1168–1178CrossRefPubMedGoogle Scholar
  28. McGenity TJ, Folwell BD, McKew BA, Sanni GO (2012) Marine crude-oil biodegradation: a central role for interspecies interactions. Aquat Biosyst 8:10CrossRefPubMedPubMedCentralGoogle Scholar
  29. Morris JJ, Kirkegaard R, Szul MJ, Johnson ZI, Zinser ER (2008) Facilitation of robust growth of Prochlorococcus colonies and dilute liquid cultures by “helper” heterotrophic bacteria. Appl Environ Microbiol 74:4530–4534CrossRefPubMedPubMedCentralGoogle Scholar
  30. Parks DH, Rinke C, Chuvochina M, Chaumeil PA, Woodcroft BJ, Evans PN, Hugenholtz P, Tyson GW (2017) Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat Microbiol 2:1533–1542CrossRefPubMedGoogle Scholar
  31. Rahul K, Sasikala C, Tushar L, Debadrita R, Ramana CV (2014) Alcanivorax xenomutans sp. nov., a hydrocarbonoclastic bacterium isolated from a shrimp cultivation pond. Int J Syst Evol Microbiol 64:3553–3558CrossRefPubMedGoogle Scholar
  32. Rivas R, Garcia-Fraile P, Peix A, Mateos PF, Martinez-Molina E, Velazquez E (2007) Alcanivorax balearicus sp. nov., isolated from Lake Martel. Int J Syst Evol Microbiol 57(6):1331–1335CrossRefPubMedGoogle Scholar
  33. Romanenko LA, Tanaka N, Frolova GM, Mikhailov VV (2010) Marinicella litoralis gen. nov., sp. nov., a gammaproteobacterium isolated from coastal seawater. Int J Syst Evol Microbiol 60:1613–1619CrossRefPubMedGoogle Scholar
  34. Romanenko LA, Tanaka N, Frolova GM, Mikhailov VV (2012) Kangiella japonica sp. nov., isolated from a marine environment. Int J Syst Evol Microbiol 60:2583–2586CrossRefGoogle Scholar
  35. Sabirova JS, Ferrer M, Regenhardt D, Timmis KN, Golyshin PN (2006) Proteomic insights into metabolic adaptations in Alcanivorax borkumensis induced by alkane utilization. J Bacteriol 188:3763–3773Google Scholar
  36. Sabirova JS, Chernikova TN, Timmis KN, Golyshin PN (2008) Niche-specificity factors of a marine oil-degrading bacterium Alcanivorax borkumensis SK2. FEMS Microbiol Lett 285:89–96Google Scholar
  37. Sabirova JS, Becker A, Lunsdorf H, Nicaud JM, Timmis KN, Golyshin PN (2011) Transcriptional profiling of the marine oil-degrading bacterium Alcanivorax borkumensis during growth on n-alkanes. FEMS Microbiol Lett 319:160–168CrossRefPubMedGoogle Scholar
  38. Schneiker S, Martins dos Santos VAP, Bartels D, Bekel T, Brecht M, Buhrmester J, Chernikova JN, Denaro R, Ferrer M, Gertler C, Goesmann A, Golyshina OV, Kaminski F, Khachane AN, Lang S, Linke B, McHardy AC, Meyer F, Nechitaylo T, Puhler A, Regenhardt D, Rupp O, Sabirova JS, Selbitschka W, Yakimov MM, Timmis KN, Vorholter FJ, Weidner S, Kaiser O, Golyshin PN (2006) Genome sequence of the ubiquitous hydrocarbon degrading Alcanivorax borkumensis. Nat Biotech 24:997–1004CrossRefGoogle Scholar
  39. Sfanos K, Harmody D, Dang P, Ledger A, Pomponi S, McCarthy P, Lopez JA (2005) Molecular systematic survey of cultured microbial associates of deep-water marine invertebrates. Syst Appl Microbiol 3:242–264CrossRefGoogle Scholar
  40. Silveira CB, Thompson F (2014) The family Alcanivoraceae. In: Rosenberg E, DeLong EF, Stackebrandt E, Lory S, Thompson F (eds) The Prokaryotes – Gammaproteobacteria, vol 9, 4th edn. Springer, New York, pp 59–67Google Scholar
  41. Spring S, Brinkmann N, Murrja M, Spröer C, Reitner J, Klenk HP (2015) High diversity of culturable prokaryotes in a lithifying hypersaline microbial mat. Geomicrobiol J 32:332–346CrossRefGoogle Scholar
  42. Thompson HF, Lesaulnier C, Pelikan C, Gutierrez T (2018) Visualization of the obligate hydrocarbonoclastic bacteria Polycyclovorans algicola and Algiphilus aromaticivorans in co-cultures with micro-algae by CARD-FISH. J Microbiol Methods 152:73–79CrossRefPubMedGoogle Scholar
  43. Wang W, Shao Z (2014) The long-chain alkane metabolism network of Alcanivorax dieselolei. Nat Commun 5:5755CrossRefPubMedGoogle Scholar
  44. Wang G, Tang M, Wu H, Dai S, Li T, Chen C, He H, Fan J, Xiang W, Li X (2015) Aliikangiella marina gen. nov., sp. nov., a marine bacterium from the culture broth of Picochlorum sp. 122, and proposal of Kangiellaceae fam. nov. in the order Oceanospirillales. Int J Syst Evol Microbiol 65:4488–4494CrossRefPubMedGoogle Scholar
  45. Wang Y, Liu Y, Zhang Z, Zheng Y, Zhang XH (2016) Marinicella pacifica sp. nov., isolated from seawater. Int J Syst Evol Microbiol 66:2313–2318CrossRefPubMedGoogle Scholar
  46. Wu Y, Lai Q, Zhou Z, Qiao N, Liu C, Shao Z (2009) Alcanivorax hongdengensis sp. nov., an alkane-degrading bacterium isolated from surface seawater of the straits of Malacca and Singapore, producing a lipopeptide as its biosurfactant. Int J Syst Evol Microbiol 59:1474–1479CrossRefPubMedGoogle Scholar
  47. Yakimov MM, Golyshin PN, Lang S, Moore ER, Abraham WR, Lunsdorf H, Timmis KN (1998) Alcanivorax borkumensis gen. nov., sp. nov., a new hydrocarbon-degrading and surfactant-producing marine bacterium. Int J Syst Bacteriol 42:339–348CrossRefGoogle Scholar
  48. Yakimov MM, Giuliano L, Crisafi E, Chernikova TN, Timmis KN, Golyshin PN (2002) Microbial community of a saline mud volcano at San Biagio-Belpasso, Mt. Etna (Italy). Environ Microbiol 4:249–256CrossRefPubMedGoogle Scholar
  49. Yakimov MM, Timmis KN, Golyshin PN (2007) Obligate oil-degrading marine bacteria. Curr Opin Biotechnol 13:257–266CrossRefGoogle Scholar
  50. Yang S, Li M, Lai Q, Li G, Shao Z (2018) Alcanivorax mobilis sp. nov., a new hydrocarbon-degrading bacterium isolated from deep-sea sediment. Int J Syst Evol Microbiol 68:1639–1643CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Michail M. Yakimov
    • 1
    • 2
    Email author
  • Peter N. Golyshin
    • 5
    • 3
  • Francesca Crisafi
    • 1
  • Renata Denaro
    • 1
  • Laura Giuliano
    • 4
  1. 1.Institute for Biological Resources and Marine Biotechnology, IRBIM-CNRMessinaItaly
  2. 2.Institute of Living SystemsImmanuel Kant Federal Baltic UniversityKaliningradRussia
  3. 3.Centre for Environmental BiotechnologyBangor UniversityBangorUK
  4. 4.Mediterranean Science Commission (CIESM)MonacoMonaco
  5. 5.School of Natural SciencesBangor UniversityBangorUK

Personalised recommendations