Aerobic Hydrocarbon-Degrading Gammaproteobacteria: Oleiphilaceae and Relatives

Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)


Despite the ubiquity of marine hydrocarbon-degrading bacteria from the family Oleiphilaceae, until now there is only one strain from this family with a validly published name and fully assembled genome, Oleiphilus messinensis strain ME102 (= DSM 13489). The availability of draft genomes of 27 other isolates gave us the opportunity to get an insight into the genome evolution and speciation patterns within this group. Whole-genome alignments and genome-to-genome distance calculation data demonstrated that Oleiphilaceae consists of four distinct genome clusters that correspond to the species level. Furthermore, we suggest that all known Oleiphilaceae genomes cluster into two genera, the first one being Oleiphilus, which includes O. messinensis ME102 and the second represented by bacteria isolated near Hawaii. The Oleiphilaceae pangenome of 1796 core gene clusters roughly corresponds to the two-thirds of an Oleiphilaceae genome. All high-quality genomes had double copies of almA coding for flavin-binding family monooxygenase linked with degradation of long-chain alkanes. Alkane monooxygenases with pairwise identities between 43% and 86.5% were encoded by four genomes, with two of them having double loci. Cytochromes P450 were present in all genomes and were assigned to two distinct clusters, which, together with the low redundancy of alkane monooxygenases, points at different microorganisms as the sources of acquisition of alkane-monooxygenation enzymes by Oleiphilaceae.



The work of ST was supported by the RSF project # 17-74-30025. MF acknowledges grants PCIN-2014-107 (within ERA NET IB2 grant nr. ERA-IB-14-030—MetaCat), PCIN-2017-078 (within the Marine Biotechnology ERA-NET (ERA-MBT) funded under the European Commission’s Seventh Framework Programme, 2013–2017, Grant agreement 604814), BIO2014-54494-R, and BIO2017-85522-R from the Ministerio de Ciencia, Innovación y Universidades, formerly Ministerio de Economía, Industria y Competitividad. MMY, TNC, OVG, MF, KEJ, and PNG received funding from the European Union’s Horizon 2020 research and innovation program Blue Growth: Unlocking the potential of Seas and Oceans under grant agreement no. [634486] (project acronym INMARE). PNG acknowledges ERA NET IB2, grant no. ERA-IB-14-030, and UK Biotechnology and Biological Sciences Research Council (BBSRC), grant no. BB/M029085/1. TCH, OVG, and PNG acknowledge the support of the Centre for Environmental Biotechnology Project funded by the European Regional Development Fund (ERDF) through the Welsh Government.


  1. Acosta-González A, Rosselló-Móra R, Marqués S (2013) Characterization of the anaerobic microbial community in oil-polluted subtidal sediments: aromatic biodegradation potential after the Prestige oil spill. Environ Microbiol 15(1):77–92CrossRefGoogle Scholar
  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410Google Scholar
  3. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402CrossRefGoogle Scholar
  4. Aronesty E (2013) Comparison of sequencing utility programs. The Open Bioinformatics Journal 7:1–8Google Scholar
  5. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19(5):455–477CrossRefGoogle Scholar
  6. Berry D, Gutierrez T (2017) Evaluating the detection of hydrocarbon-degrading bacteria in 16S rRNA gene sequencing surveys. Front Microbiol 8:896CrossRefGoogle Scholar
  7. Eddy SR (2011) Accelerated profile HMM searches. PLoS Comput Biol 7(10):e1002195CrossRefGoogle Scholar
  8. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797CrossRefGoogle Scholar
  9. Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-Vegas A, Salazar GA, Tate J, Bateman A (2015) The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 44(D1):D279–D285CrossRefGoogle Scholar
  10. Golyshin PN, Chernikova T, Abraham WR, Lunsdorf H, Timmis KN, Yakimov MM (2002) Oleiphilaceae fam. Nov., to include Oleiphilus messinensis gen. nov., sp. nov., a novel marine bacterium that obligately utilizes hydrocarbons. Int J Syst Evol Microbiol 52:901–911PubMedGoogle Scholar
  11. Hyatt D, Chen GL, LoCascio PF, Land ML, Larimer FW, Hauser LJ (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11(1):119CrossRefGoogle Scholar
  12. Kim M, Oh HS, Park SC, Chun J (2014) Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 64(2):346–351CrossRefGoogle Scholar
  13. Kodama Y, Shumway M, Leinonen R (2011) The sequence read archive: explosive growth of sequencing data. Nucleic Acids Res 40(D1):D54–D56CrossRefGoogle Scholar
  14. Li L, Stoeckert CJ, Roos DS (2003) OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 13(9):2178–2189CrossRefGoogle Scholar
  15. Louis P, Galinski EA (1997) Characterization of genes for the biosynthesis of the compatible solute ectoine from Marinococcus halophilus and osmoregulated expression in Escherichia coli. Microbiology 143(4):1141–1149CrossRefGoogle Scholar
  16. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14(1):60CrossRefGoogle Scholar
  17. Nawrocki EP, Eddy SR (2013) Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 29(22):2933–2935CrossRefGoogle Scholar
  18. Nawrocki EP, Burge SW, Bateman A, Daub J, Eberhardt RY, Eddy SR, Floden EW, Gardner PP, Jones TA, Tate J, Finn RD (2014) Rfam 12.0: updates to the RNA families database. Nucleic Acids Res 43(D1):D130–D137CrossRefGoogle Scholar
  19. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW (2014) Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25:1043–1055CrossRefGoogle Scholar
  20. Parks DH, Rinke C, Chuvochina M, Chaumeil PA, Woodcroft BJ, Evans PN, Hugenholtz P, Tyson GW (2017) Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat Microbiol 2:1533–1542CrossRefGoogle Scholar
  21. Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106(45):19126–19131CrossRefGoogle Scholar
  22. Rodriguez-R LM, Konstantinidis KT (2016) The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Preprints 4:e1900v1Google Scholar
  23. Scoma A, Barbato M, Borin S, Daffonchio D, Boon N (2016) An impaired metabolic response to hydrostatic pressure explains Alcanivorax borkumensis recorded distribution in the deep marine water column. Sci Rep 6:31316CrossRefGoogle Scholar
  24. Shao Z, Wang W (2013) Enzymes and genes involved in aerobic alkane degradation. Front Microbiol 4:116PubMedPubMedCentralGoogle Scholar
  25. Singh SK, Kotakonda A, Kapardar RJ, Kankipati HK, Rao PS, Sankaranarayanan PM, Vetaikorumagan SR, Gundlapally SP, Nagappa R, Shivaji S (2015) Response of bacterioplankton to iron fertilization of the Southern Ocean, Antarctica. Front Microbiol 6:863PubMedPubMedCentralGoogle Scholar
  26. Sosa OA, Repeta DJ, Ferrón S, Bryant JA, Mende DR, Karl DM, DeLong EF (2017) Isolation and characterization of bacteria that degrade phosphonates in marine dissolved organic matter. Front Microbiol 8:1786CrossRefGoogle Scholar
  27. Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849CrossRefGoogle Scholar
  28. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9):1312–1313CrossRefGoogle Scholar
  29. Toshchakov SV, Korzhenkov AA, Chernikova TN, Ferrer M, Golyshina OV, Yakimov MM, Golyshin PN (2017) The genome analysis of Oleiphilus messinensis ME102 (DSM 13489T) reveals backgrounds of its obligate alkane-devouring marine lifestyle. Mar Genomics 36:41–47CrossRefGoogle Scholar
  30. Wang Y, Coleman-Derr D, Chen G, Gu YQ (2015) OrthoVenn: a web server for genome wide comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res 43:W78–W84CrossRefGoogle Scholar
  31. Yakimov MM, Golyshin PN (2014) The Family Oleiphilaceae. In: Rosenberg E., DeLong E.F., Lory S., Stackebrandt E., Thompson F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg
  32. Yakimov MM, Golyshin PN, Lang S, Moore ER, Abraham WR, Lünsdorf H, Timmis KN (1998) Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium. Int J Syst Bacteriol 48(2):339–348CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.National Research Centre “Kurchatov Institute”MoscowRussia
  2. 2.Winogradsky Institute of Microbiology, FRC “Biotechnology” RASMoscowRussia
  3. 3.School of Natural SciencesBangor UniversityBangorUK
  4. 4.Department of Applied BiocatalysisCSIC – Institute of CatalysisMadridSpain
  5. 5.Institute of Molecular Enzyme TechnologyHeinrich Heine University DüsseldorfJülichGermany
  6. 6.Institute for Biological Resources and Marine Biotechnology, IRBIM-CNRMessinaItaly
  7. 7.Centre for Environmental Biotechnology, Bangor UniversityBangorUK
  8. 8.Institute of Bio- and Geosciences IBG-1: BiotechnologyForschungszentrum Jülich GmbHJülichGermany
  9. 9.Institute of Living SystemsImmanuel Kant Federal Baltic UniversityKaliningradRussia

Personalised recommendations