Eukaryotic Hydrocarbon Degraders

Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)


Hydrocarbons have been part of the biosphere for millions of years, and a diverse group of eukaryotes has evolved to degrade them. Most of the cultures “in captivity” are fungi, but there are also examples from several algal phyla, and there are reports that some protozoa can degrade hydrocarbons. To date, all hydrocarbon degradation by eukaryotes seems to be aerobic. Only a few fungi and a single achlorophyllous green alga are known to be able to grow on hydrocarbons as their sole source of carbon and energy, but several are economically important, either in “spoiling” fuels or in biofilters. Many more fungi are able to degrade polycyclic aromatic hydrocarbons at a fast enough rate to be useful in the remediation of contaminated soil, and they may play an important role in the attenuation of the perennial natural production of these pyrogenic pollutants.


  1. Acevedo F, Pizzul L, del Pilar Castillo M, Cuevas R, Diez MC (2011) Degradation of polycyclic aromatic hydrocarbons by the Chilean white-rot fungus Anthracophyllum discolor. J Hazard Mater 185:212–219CrossRefPubMedGoogle Scholar
  2. Adl SM, Simpson AG, Farmer MA, Andersen RA, Anderson OR, Barta JR, Bowser SS, Brugerolle GU, Fensome RA, Fredericq S, James TY (2005) The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Euk Microbiol 52:399–451Google Scholar
  3. Amanchukwu SC, Obafemi A, Okpokwasili GC (1989) Hydrocarbon degradation and utilization by a palm-wine yeast isolate. FEMS Microbiol Lett 57:151–154CrossRefGoogle Scholar
  4. Antić MP, Jovancicevic B, Vrvić MM, Schwarzbauer J (2006) Petroleum pollutant degradation by surface water microorganisms. Environ Sci Pollut Res 13:320–327CrossRefGoogle Scholar
  5. April TM, Abbott SP, Foght JM, Currah RS (1998) Degradation of hydrocarbons in crude oil by the ascomycete Pseudallescheria boydii (Microascaceae). Can J Microbiol 44:270–278CrossRefPubMedGoogle Scholar
  6. Aranda E, Kinne M, Kluge M, Ullrich R, Hofrichter M (2009) Conversion of dibenzothiophene by the mushrooms Agrocybe aegerita and Coprinellus radians and their extracellular peroxygenases. Appl Microbiol Biotechnol 82:1057–1066CrossRefPubMedGoogle Scholar
  7. Aranda E, Godoy P, Reina R, Badia-Fabregat M, Rosell M, Marco-Urrea E, García-Romera I (2017) Isolation of Ascomycota fungi with capability to transform PAHs: Insights into the biodegradation mechanisms of Penicillium oxalicum. Int Biodeter Biodegr 122:141–150CrossRefGoogle Scholar
  8. Baldi F, Pepi M, Fava F (2003) Growth of Rhodosporidium toruloides strain DBVPG 6662 on dibenzothiophene crystals and Orimulsion. Appl Environ Microbiol 69:4689–4696CrossRefPubMedPubMedCentralGoogle Scholar
  9. Batista-García RA, Kumar VV, Ariste A, Tovar-Herrera OE, Savary O, Peidro-Guzmán H, González-Abradelo D, Jackson SA, Dobson AD, del Rayo Sánchez-Carbente M, Folch-Mallol JL (2017) Simple screening protocol for identification of potential mycoremediation tools for the elimination of polycyclic aromatic hydrocarbons and phenols from hyperalkalophile industrial effluents. J Environ Manag 198:1–11CrossRefGoogle Scholar
  10. Boonchan S, Britz ML, Stanley GA (2000) Degradation and mineralization of high-molecular-weight polycyclic aromatic hydrocarbons by defined fungal-bacterial cocultures. Appl Environ Microbiol 66:1007–1019CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bossert I, Bartha R (1984) The fate of petroleum in soil ecosystems. In: Atlas RM (ed) Petroleum microbiology. Macmillan, New York, pp 435–473Google Scholar
  12. Braun-Lüllemann A, Hüttermann A, Majcherczyk A (1999) Screening of ectomycorrhizal fungi for degradation of polycyclic aromatic hydrocarbons. Appl Microbiol Biotechnol 53:127–132CrossRefGoogle Scholar
  13. Brodie J, Lewis J (2007) Unravelling the algae; The past, present and future of algal systematics. CRC Press, Boca RatonCrossRefGoogle Scholar
  14. Cambria MT, Minniti Z, Librando V, Cambria A (2008) Degradation of polycyclic aromatic hydrocarbons by Rigidoporus lignosus and its laccase in the presence of redox mediators. Appl Biochem Biotechnol 149:1–8CrossRefPubMedGoogle Scholar
  15. Cavaliere M, Feng S, Soyer OS, Jiménez JI (2017) Cooperation in microbial communities and their biotechnological applications. Environ Microbiol 19:2949–2963CrossRefPubMedPubMedCentralGoogle Scholar
  16. Cerniglia CE (1992) Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3:351–368CrossRefGoogle Scholar
  17. Cerniglia CE, Hebert RL, Szaniszlo PJ, Gibson DT (1978) Fungal transformation of naphthalene. Arch Microbiol 117:135–143CrossRefPubMedGoogle Scholar
  18. Cerniglia CE, Gibson DT, Van Baalen C (1980) Oxidation of naphthalene by cyanobacteria and microalgae. J Gen Microbiol 116:495–500Google Scholar
  19. Cerniglia CE, Gibson DT, Van Baalen C (1982) Naphthalene metabolism by diatoms isolated from the Kachemak Bay region of Alaska. J Gen Microbiol 128:987–990Google Scholar
  20. Chaillan F, Le Flèche A, Bury E, Phantavong Y, Grimont P, Saliot A, Oudot J (2004) Identification and biodegradation potential of tropical aerobic hydrocarbon-degrading microorganisms. Res Microbiol 155:587–595CrossRefPubMedGoogle Scholar
  21. Chaîneau CH, Morel J, Dupont J, Bury E, Oudot J (1999) Comparison of the fuel oil biodegradation potential of hydrocarbon-assimilating microorganisms isolated from a temperate agricultural soil. Sci Total Environ 227:237–247CrossRefPubMedGoogle Scholar
  22. Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM (2009) The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucl Acid Res 37:D141–D145CrossRefGoogle Scholar
  23. da Silva M, Cerniglia CE, Pothuluri JV, Canhos VP, Esposito E (2003) Screening filamentous fungi isolated from estuarine sediments for the ability to oxidize polycyclic aromatic hydrocarbons. World J Microbiol Biotechnol 19:399–405CrossRefGoogle Scholar
  24. Dai CC, Tian LS, Zhao YT, Chen Y, Xie H (2010) Degradation of phenanthrene by the endophytic fungus Ceratobasidum (sic) stevensii found in Bischofia polycarpa. Biodegradation 21:245–255CrossRefPubMedGoogle Scholar
  25. Darwin CR (1862) On the various contrivances by which British and Foreign orchids are fertilised by insects, and on the good effects of intercrossing. John Murray, LondonGoogle Scholar
  26. Darwin CR, Wallace AR (1858) On the tendency of species to form varieties; and on the perpetuation of varieties and species by natural means of selection. J Proc Linn Soc Lond Zool 3:46–50Google Scholar
  27. Davis W (2005) Decadence and the organic metaphor. Representations 89:131–151CrossRefGoogle Scholar
  28. Dodge RH, Cerniglia CE, Gibson DT (1979) Fungal metabolism of biphenyl. Biochem J 178:223–230CrossRefPubMedPubMedCentralGoogle Scholar
  29. El-Sheekh MM, Hamouda RA, Nizam AA (2013) Biodegradation of crude oil by Scenedesmus obliquus and Chlorella vulgaris growing under heterotrophic conditions. Int Biodeter Biodegr 82:67–72CrossRefGoogle Scholar
  30. Embar K, Forgacs C, Sivan A (2006) The role of indigenous bacterial and fungal soil populations in the biodegradation of crude oil in a desert soil. Biodegradation 17:369–377CrossRefPubMedGoogle Scholar
  31. Engler KH, Kelly SL, Coker RD, Evans IH (2000) Toxin-binding properties of cytochrome P450 in Saccharomyces cerevisiae and Kluyveromyces marxianus. Biotechnol Lett 22:3–8CrossRefGoogle Scholar
  32. Fedorak PM, Semple KM, Westlake DW (1984) Oil-degrading capabilities of yeasts and fungi isolated from coastal marine environments. Can J Microbiol 30:565–571CrossRefGoogle Scholar
  33. Field JA, De Jong E, Costa GF, De Bont JAM (1992) Biodegradation of polycyclic aromatic hydrocarbons by new isolates of white rot fungi. Appl Environ Microbiol 58:2219–2226PubMedPubMedCentralGoogle Scholar
  34. Floodgate GD (1984) The fate of petroleum in marine ecosystems. In: Atlas RM (ed) Petroleum microbiology. Macmillan, New York, pp 355–397Google Scholar
  35. Gamila HA, Ibrahim MBM (2004) Algal bioassay for evaluating the role of algae in bioremediation of crude oil: I-Isolated strains. Bull Environ Contam Toxicol 73:883–889CrossRefPubMedGoogle Scholar
  36. Garon D, Sage L, Seigle-Murandi F (2004) Effects of fungal bioaugmentation and cyclodextrin amendment on fluorene degradation in soil slurry. Biodegradation 15:1–8CrossRefPubMedGoogle Scholar
  37. Garzoli L, Gnavi G, Tamma F, Tosi S, Varese GC, Picco AM (2015) Sink or swim: updated knowledge on marine fungi associated with wood substrates in the Mediterranean Sea and hints about their potential to remediate hydrocarbons. Prog Oceanogr 137:140–148CrossRefGoogle Scholar
  38. Gaylarde CC, Bento FM, Kelley J (1999) Microbial contamination of stored hydrocarbon fuels and its control. Rev Microbiol 30:1–10CrossRefGoogle Scholar
  39. Gesell M, Hammer E, Specht M, Francke W, Schauer F (2001) Biotransformation of biphenyl by Paecilomyces lilacinus and characterization of ring cleavage products. Appl Environ Microbiol 67:1551–1557CrossRefPubMedPubMedCentralGoogle Scholar
  40. Gest H (1999) Bacterial classification and taxonomy: a ‘primer’ for the new millennium. Microbiol Today 26:70–71Google Scholar
  41. Giraud F, Guiraud P, Kadri M, Blake G, Steiman R (2001) Biodegradation of anthracene and fluoranthene by fungi isolated from an experimental constructed wetland for wastewater treatment. Water Res 35:4126–4136CrossRefPubMedGoogle Scholar
  42. Gramss G, Voigt KD, Kirsche B (1999) Degradation of polycyclic aromatic hydrocarbons with three to seven aromatic rings by higher fungi in sterile and unsterile soils. Biodegradation 10:51–62CrossRefPubMedGoogle Scholar
  43. Hadibarata T, Kristanti RA (2012) Fate and cometabolic degradation of benzo[a]pyrene by white-rot fungus Armillaria sp. F022. Bioresour Technol 107:314–318CrossRefPubMedGoogle Scholar
  44. Haemmerli SD, Leisola MS, Sanglard D, Fiechter A (1986) Oxidation of benzo[a]pyrene by extracellular ligninases of Phanerochaete chrysosporium. Veratryl alcohol and stability of ligninase. J Biol Chem 261:6900–6903PubMedGoogle Scholar
  45. Hawksworth DL (2012) Global species numbers of fungi: are tropical studies and molecular approaches contributing to a more robust estimate? Biodivers Conserv 21:2425–2433CrossRefGoogle Scholar
  46. Hawksworth DL, Crous PW, Redhead SA, Reynolds DR, Samson RA, Seifert KA, Taylor JW, Wingfield MJ, Abaci Ö, Aime C, Asan A, Bai FY, de Beer ZW, Begerow D, Berikten D, Boekhout T, Buchanan PK, Burgess T, Buzina W, Cai L, Cannon PF, Crane JL, Damm U, Daniel HM, van Diepeningen AD, Druzhinina I, Dyer PS, Eberhardt U, Fell JW, Frisvad JC, Geiser DM, Geml J, Glienke C, Gräfenhan T, Groenewald JZ, Groenewald M, de Gruyter J, Guého-Kellermann E, Guo LD, Hibbett DS, Hong SB, de Hoog GS, Houbraken J, Huhndorf SM, Hyde KD, Ismail A, Johnston PR, Kadaifciler DG, Kirk PM, Kõljalg U, Kurtzman CP, Lagneau PE, Lévesque CA, Liu X, Lombard L, Meyer W, Miller A, Minter DW, Najafzadeh MJ, Norvell L, Ozerskaya SM, Öziç R, Pennycook SR, Peterson SW, Pettersson OV, Quaedvlieg W, Robert VA, Ruibal C, Schnürer J, Schroers HJ, Shivas R, Slippers B, Spierenburg H, Takashima M, Taşkın E, Thines M, Thrane U, Uztan AH, van Raak M, Varga J, Vasco A, Verkley G, Videira SIR, de Vries RP, Weir BS, Yilmaz N, Yurkov A, Zhang N (2011) The Amsterdam declaration on fungal nomenclature. IMA Fungus 2:105–112CrossRefPubMedPubMedCentralGoogle Scholar
  47. Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE, Huhndorf S, James T, Kirk PM, Lücking R, Lumbsch T, Lutzoni F, Matheny PB, Mclaughlin DJ, Powell MJ, Redhead S, Schoch CL, Spatafora JW, Stalpers JA, Vilgalys R, Aime MC, Aptroot A, Bauer R, Begerow D, Benny GL, Castlebury LA, Crous PW, Dai YC, Gams W, Geiser DM, Griffith GW, Gueidan C, Hawksworth DL, Hestmark G, Hosaka K, Humber RA, Hyde K, Ironside JE, Kõljalg U, Kurtzman CP, Larsson KH, Lichtwardt R, Longcore J, Miądlikowska J, Miller A, Moncalvo JM, Mozley-Standridge S, Oberwinkler F, Parmasto E, Reeb V, Rogers JD, Roux C, Ryvarden L, Sampaio JP, Schüßler A, Sugiyama J, Thorn RG, Tibell L, Untereiner WA, Walker C, Wang Z, Weir A, Weiß M, White MM, Winka K, Yao YJ, Zhang N (2007) A higher-level phylogenetic classification of the Fungi. Mycol Res 111:509–547CrossRefPubMedGoogle Scholar
  48. Hildén KS, Bortfeldt R, Hofrichter M, Hatakka A, Lundell TK (2008) Molecular characterization of the basidiomycete isolate Nematoloma frowardii b19 and its manganese peroxidase places the fungus in the corticioid genus Phlebia. Microbiology 154:2371–2379CrossRefPubMedGoogle Scholar
  49. Hofrichter M, Scheibner K, Schneegaß L, Fritsche W (1998) Enzymatic combustion of aromatic and aliphatic compounds by manganese peroxidase from Nematoloma frowardii. Appl Environ Microbiol 64:399–404PubMedPubMedCentralGoogle Scholar
  50. Hong YW, Yuan DX, Lin QM, Yang TL (2008) Accumulation and biodegradation of phenanthrene and fluoranthene by the algae enriched from a mangrove aquatic ecosystem. Mar Poll Bull 56:1400–1405CrossRefGoogle Scholar
  51. Hong JW, Park JY, Gadd GM (2010) Pyrene degradation and copper and zinc uptake by Fusarium solani and Hypocrea lixii isolated from petrol station soil. J Appl Microbiol 108:2030–2040CrossRefPubMedGoogle Scholar
  52. Index Fungorum (2018)
  53. James TY, Kauff F, Schoch C, Matheny PB, Hofstetter V, Cox CJ, Celio G, Geuidan C, Fraker E, Miadlikowska J, Lumbsch HT, Rauhut A, Reeb V, Arnold AE, Amtoft A, Stajich JE, Hosaka K, Sung G-H, Johnson D, O’Rourke B, Crockett M, Binder M, Curtis JM, Slot JC, Wang Z, Wilson AW, Schüßler A, Longcore JE, O’Donnell K, Mozley-Standridge S, Porter D, Letcher PM, Powell MJ, Taylor JW, White MM, Griffith GW, Davies DR, Humber RA, Morton JB, Sugiyama J, Rossman A, Rogers JD, Pfister DH, Hewitt D, Hansen K, Hambleton S, Shoemaker RA, Kohlmeyer J, Volkmann- Kohlmeyer B, Spotts RA, Serdani M, Crous PW, Hughes KW, Matsuura K, Langer E, Langer G, Untereiner WA, Lücking R, Büdel B, Geiser DM, Aptroot A, Diederich P, Schmitt I, Schultz M, Yahr R, Hibbett DS, Lutzoni F, McLaughlin DJ, Spatafora JW, Vilgalys R (2006) Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature 443: 818–822Google Scholar
  54. Jin Y, Veiga MC, Kennes C (2006) Performance optimization of the fungal biodegradation of α-pinene in gas-phase biofilter. Proc Biochem 41:1722–1728CrossRefGoogle Scholar
  55. Juckpech K, Pinyakong O, Rerngsamran P (2012) Degradation of polycyclic aromatic hydrocarbons by newly isolated Curvularia sp. F18, Lentinus sp. S5, and Phanerochaete sp. T20. ScienceAsia 38:147–156CrossRefGoogle Scholar
  56. Kachieng’a L, Momba MN (2017) Kinetics of petroleum oil biodegradation by a consortium of three protozoan isolates (Aspidisca sp., Trachelophyllum sp. and Peranema sp.). Biotechnol Rep 15:125–1231Google Scholar
  57. Kannangara S, Ambadeniya P, Undugoda L, Abeywickrama K (2016) Polyaromatic hydrocarbon degradation of moss endophytic fungi isolated from Macromitrium sp. in Sri Lanka. J Agric Sci Technol A 6:171–182Google Scholar
  58. Katemai W, Maneerat S, Kawai F, Kanzaki H, Nitoda T (2008) Purification and characterization of a biosurfactant produced by Issatchenkia orientalis SR4. J Gen Appl Microbiol 54:79–82CrossRefPubMedGoogle Scholar
  59. Kelley J (2002) Detection method. World Patent WO2/068959Google Scholar
  60. Kitamoto D, Ikegami T, Suzuki GT, Sasaki A, Takeyama YI, Idemoto Y, Koura N, Yanagishita H (2001) Microbial conversion of n-alkanes into glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma (Candida antarctica). Biotechnol Lett 23:1709–1714CrossRefGoogle Scholar
  61. Kohlmeyer B, Spotts RA, Serdani M, Crous PW, Hughes KW, Matsuura K, Langer E, Langer G, Untereiner WA, Lücking R, Büdel B, Geiser DM, Aptroot A, Diederich P, Schmitt I, Schultz M, Yahr R, Hibbett DS, Lutzoni F, McLaughlin DJ, Spatafora JW, Vilgalys R (2006) Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature 443:818–822CrossRefPubMedGoogle Scholar
  62. Kotterman MJJ, Vis EH, Field JA (1998) Successive mineralization and detoxification of benzo[a]pyrene by the white rot fungus Bjerkandera sp. Strain BOS55 and indigenous microflora. Appl Environ Microbiol 64:2853–2858PubMedPubMedCentralGoogle Scholar
  63. Krivobok S, Miriouchkine E, Seigle-Murandi F, Benoit-Guyod JL (1998) Biodegradation of anthracene by soil fungi. Chemosphere 37:523–530CrossRefPubMedGoogle Scholar
  64. Lambert M, Kremer S, Sterner O, Anke H (1994) Metabolism of pyrene by the Basidiomycete Crinipellis stipitaria and identification of pyrenequinones and their hydroxylated precursors in strain JK375. Appl Environ Microbiol 60:3597–3601PubMedPubMedCentralGoogle Scholar
  65. Lange J, Hammer E, Specht M, Francke W, Schauer F (1998) Biodegradation of biphenyl by the ascomycetous yeast Debaryomyces vanrijiae. Appl Microbiol Biotechnol 50:364–368CrossRefPubMedGoogle Scholar
  66. Lee H, Jang Y, Kim JM, Kim GH, Kim JJ (2013) White-rot fungus Merulius tremellosus KUC9161 identified as an effective degrader of polycyclic aromatic hydrocarbons. J Basic Microbiol 53:195–199CrossRefPubMedGoogle Scholar
  67. Lee H, Jang Y, Choi YS, Kim MJ, Lee J, Lee H, Hong JH, Lee YM, Kim GH, Kim JJ (2014) Biotechnological procedures to select white rot fungi for the degradation of PAHs. J Microbiol Methods 97:56–62CrossRefPubMedGoogle Scholar
  68. Lee H, Yun SY, Jang S, Kim GH, Kim JJ (2015) Bioremediation of polycyclic aromatic hydrocarbons in creosote-contaminated soil by Peniophora incarnata KUC8836. Bioremediation J 19:1–8CrossRefGoogle Scholar
  69. Liebe B, Fock HP (1992) Growth and adaptation of the green alga Chlamydomonas reinhardtii on diesel exhaust particle extracts. J Gen Microbiol 138:973–978CrossRefGoogle Scholar
  70. Lima ALC, Farrington JW, Reddy CM (2005) Combustion-derived polycyclic aromatic hydrocarbons in the environment – a review. Environ Forensics 6:109–131CrossRefGoogle Scholar
  71. Lin L, Fang W, Liao X, Wang F, Wei D, Leger RJ (2011) The MrCYP52 cytochrome P450 monoxygenase gene of Metarhizium robertsii is important for utilizing insect epicuticular hydrocarbons. PLoS One 6(12):e28984CrossRefPubMedPubMedCentralGoogle Scholar
  72. Liu Y, Luan TG, Lu NN, Lan CY (2006) Toxicity of fluoranthene and its biodegradation by Cyclotella caspia alga. J Integr Plant Biol 48:169–180CrossRefGoogle Scholar
  73. Lücking R, Dal-Forno M, Sikaroodi M, Gillevet PM, Bungartz F, Moncada B, Yánez-Ayabaca A, Chaves JL, Coca LF, Lawrey JD (2014) A single macrolichen constitutes hundreds of unrecognized species. Proc Natl Acad Sci USA 111:11091–11096CrossRefPubMedGoogle Scholar
  74. Luo S, Chen B, Lin L, Wang X, Tam NF, Luan T (2014) Pyrene degradation accelerated by constructed consortium of bacterium and microalga: effects of degradation products on the microalgal growth. Environ Sci Technol 48:13917–13924CrossRefPubMedGoogle Scholar
  75. Lutzoni F, Kauff F, Cox CJ, McLaughlin D, Celio G, Dentinger B, Padamsee M, Hibbett D, James TY, Baloch E, Grube M, Reeb V, Hofstetter V, Schoch C, Arnold AE, Miadlikowska J, Spatafora J, Johnson D, Hambleton S, Crockett M, Shoemaker R, Sung GH, Lücking R, Lumbsch T, O’Donnell K, Binder M, Diederich P, Ertz D, Gueidan C, Hansen K, Harris RC, Hosaka K, Lim YW, Matheny B, Nishida H, Pfister D, Rogers J, Rossman A, Schmitt I, Sipman H, Stone J, Sugiyama J, Yahr R, Vilgalys R (2004) Assembling the fungal tree of life: progress, classification, and evolution of subcellular traits. Am J Bot 91:1446–1480CrossRefPubMedGoogle Scholar
  76. Markovetz AJ, Cazin J, Allen JE (1968) Assimilation of alkanes and alkenes by fungi. Appl Microbiol 16:487–489Google Scholar
  77. Martens R, Zadrazil F (1998) Screening of white-rot fungi for their ability to mineralize polycyclic aromatic hydrocarbons in soil. Folia Microbiol (Praha) 43:97–103CrossRefGoogle Scholar
  78. Mauersberger S, Wang HJ, Gaillardin C, Barth G, Nicaud JM (2001) Insertional mutagenesis in the n-alkane-assimilating yeast Yarrowia lipolytica: generation of tagged mutations in genes involved in hydrophobic substrate utilization. J Bacteriol 183:5102–5109CrossRefPubMedPubMedCentralGoogle Scholar
  79. Middelhoven WJ, Scorzetti G, Fell JW (2000) Trichosporon veenhuisii sp. nov., an alkane-assimilating anamorphic basidiomycetous yeast. Int J Syst Evol Microbiol 50:381–387CrossRefPubMedGoogle Scholar
  80. Moreira D, López-García P (2017) Evolution: king-size plastid genomes in a new red algal clade. Curr Biol 27:R651–R653CrossRefPubMedPubMedCentralGoogle Scholar
  81. Moustafa AM (2016) Bioremediation of oil spill in kingdom of Saudi Arabia by using fungi isolated from polluted soils. Int J Curr Microbiol Appl Sci 5:680–691CrossRefGoogle Scholar
  82. Mueller JG, Cerniglia CE, Pritchard PH (1996) Bioremediation of environments contaminated by polycyclic aromatic hydrocarbons. In: Crawford RL, Crawford DL (eds) Bioremediation. Cambridge University Press, Cambridge, pp 125–194CrossRefGoogle Scholar
  83. NCBI Taxonomy Homepage (2018)
  84. Neihof RA (1988) Microbes in fuel; an overview with a naval perspective. In: Chesnau HL, Dorris M (eds) Distillate fuel: contamination, storage and handling ASTM. STP 1005. American Society for Testing and Materials, Philadelphia, pp 6–14CrossRefGoogle Scholar
  85. Nelson DR (2017) Cytochrome P450 diversity in the tree of life. Biochim Biophys Acta 1866:141–154CrossRefPubMedCentralGoogle Scholar
  86. Novotny C, Erbanova P, Cajthaml T, Rothschild N, Dosoretz C, Sasek V (2000) Irpex lacteus, a white rot fungus applicable to water and soil bioremediation. Appl Microbiol Biotechnol 54:850–853CrossRefPubMedGoogle Scholar
  87. Oudot J, Dupont J, Haloui S, Roquebert MF (1993) Biodegradation potential of hydrocarbon-assimilating tropical fungi. Soil Biol Biochem 25:1167–1173CrossRefGoogle Scholar
  88. Pan F, Yang Q, Zhang Y, Zhang S, Yang M (2004) Biodegradation of polycyclic aromatic hydrocarbons by Pichia anomala. Biotechnol Lett 26:803–806CrossRefPubMedGoogle Scholar
  89. Parker DS, Kaiser RI (2017) On the formation of nitrogen-substituted polycyclic aromatic hydrocarbons (NPAHs) in circumstellar and interstellar environments. Chem Soc Rev 46:452–463CrossRefPubMedGoogle Scholar
  90. Pickard MA, Roman R, Tinoco R, Vazquez-Duhalt R (1999) Polycyclic aromatic hydrocarbon metabolism by white rot fungi and oxidation by Coriolopsis gallica UAMH 8260-laccase. Appl Environ Microbiol 65:3805–3809PubMedPubMedCentralGoogle Scholar
  91. Potin O, Rafin C, Veignie E (2004) Bioremediation of an aged polycyclic aromatic hydrocarbons (PAHs)-contaminated soil by filamentous fungi isolated from the soil. Int Biodeter Biodegr 54:45–52CrossRefGoogle Scholar
  92. Prenafeta-Boldú FX, Andrea KU, Luykx DM, Heidrun AN, van Groenestijn JW (2001) Isolation and characterisation of fungi growing on volatile aromatic hydrocarbons as their sole carbon and energy source. Mycol Res 105:477–484Google Scholar
  93. Prenafeta-Boldú FX, De Hoog GS, Summerbell RC (2018) Fungal communities in hydrocarbon degradation. In: TJ McGenity (ed) Microbial communities utilizing hydrocarbons and lipids. Handbook of hydrocarbon and lipid microbiology. Springer, Cham.
  94. Prince RC, Walters CC (2016) Biodegradation of oil and its implications for source identification. In: Stout SA, Wang Z (eds) Standard handbook oil spill environmental forensics, 2nd edn. Academic, Burlington, pp 869–916. 01803CrossRefGoogle Scholar
  95. Prince RC, Amande TJ, McGenity TJ (2018) Prokaryotic hydrocarbon degraders. In: TJ McGenity (ed) Taxonomy, genomics and ecophysiology of hydrocarbon-degrading microbes. Handbook of hydrocarbon and lipid microbiology. Springer, Cham.
  96. Rafin C, Veignie E (2018) Hormoconis resinae, the kerosene fungus. In: TJ McGenity (ed) Taxonomy, genomics and ecophysiology of hydrocarbon-degrading microbes. Handbook of hydrocarbon and lipid microbiology. Springer, Cham.
  97. Ravelet C, Krivobok S, Sage L, Steiman R (1999) Biodegradation of pyrene by sediment fungi. Chemosphere 40:557–563CrossRefGoogle Scholar
  98. Rodriguez-Ezpeleta N, Brinkmann H, Burey SC, Roure B, Burger G, Loffelhardt W, Bohnert HJ, Philippe H, Lang BF (2005) Monophyly of primary photosynthetic eukaryotes: green plants, red algae, and glaucophytes. Curr Biol 15:1325–1330CrossRefPubMedGoogle Scholar
  99. Sack U, Heinze TM, Deck J, Cerniglia CE, Martens R, Zadrazil F, Fritsche W (1997) Comparison of phenanthrene and pyrene degradation by different wood-decaying fungi. Appl Environ Microbiol 10:3919–3925Google Scholar
  100. Seifert KA, Hughes SJ, Boulay H, Louis-Seize G (2007) Taxonomy, nomenclature and phylogeny of three cladosporium-like hyphomycetes, Sorocybe resinae, Seifertia azaleae and the Hormoconis anamorph of Amorphotheca resinae. Stud Mycol 58:235–245CrossRefPubMedPubMedCentralGoogle Scholar
  101. Shenoy BD, Jeewon R, Hyde KD (2007) Impact of DNA sequence-data on the taxonomy of anamorphic fungi. Fungal Divers 26:1–54Google Scholar
  102. Silva IS, Grossman M, Durrant LR (2009) Degradation of polycyclic aromatic hydrocarbons (2–7 rings) under microaerobic and very-low-oxygen conditions by soil fungi. Int Biodeter Biodegr 63:244–229Google Scholar
  103. Snellman EA, Collins RP, Cooke JC (1988) Utilization of fuel oils by fungi isolated from oceanic tar balls. Lett Appl Microbiol 6:105–107CrossRefGoogle Scholar
  104. Spatafora JW, Aime MC, Grigoriev IV, Martin F, Stajich JE, Blackwell M (2017) The fungal tree of life: from molecular systematics to genome-scale phylogenies. In: Heitman J, Howlett BJ, Crous PW, Stukenbrock EH, James TY, Gow NAR (eds) The fungal kingdom. ASM Press, Washington, DC. Scholar
  105. Steffen KT, Hatakka A, Hofrichter M (2002) Removal and mineralization of polycyclic aromatic hydrocarbons by litter-decomposing basidiomycetous fungi. Appl Microbiol Biotechnol 60:212–217CrossRefPubMedGoogle Scholar
  106. Sutherland JB, Cross EL, Heinze TM, Freeman JP, Moody JD (2005) Fungal biotransformation of benzo[f]quinoline, benzo[h]quinoline, and phenanthridine. Appl Microbiol Biotechnol 67:405–411CrossRefPubMedGoogle Scholar
  107. Swift ST (1988) Identification and control of microbial growth in fuel handling systems. In: Chesnau HL, Dorris M (eds) Distillate fuel: contamination, storage and handling. ASTM STP 1005. American Society for Testing and Materials, Philadelphia, pp 15–26CrossRefGoogle Scholar
  108. Thompson H, Angelova A, Bowler B, Jones M, Gutierrez T (2017) Enhanced crude oil biodegradative potential of natural phytoplankton-associated hydrocarbonoclastic bacteria. Environ Microbiol 19:2843–2861CrossRefPubMedGoogle Scholar
  109. Tian LS, Dai CC, Zhao YT, Zhao M, Yong YH, Wang XX (2007) The degradation of phenanthrene by endophytic fungi Phomopsis sp. single and co-cultured with rice. China Environ Sci Chin Ed 27:757–762Google Scholar
  110. Todd SJ, Cain RB, Schmidt S (2002) Biotransformation of naphthalene and diaryl ethers by green microalgae. Biodegradation 13:229–238CrossRefPubMedGoogle Scholar
  111. Valentín L, Feijoo G, Moreira MT, Lema JM (2006) Biodegradation of polycyclic aromatic hydrocarbons in forest and salt marsh soils by white-rot fungi. Int Biodeter Biodegr 58:15–21CrossRefGoogle Scholar
  112. Valentine DL, Reddy CM (2015) Latent hydrocarbons from cyanobacteria. Proc Natl Acad Sci USA 112:13434–13435CrossRefPubMedGoogle Scholar
  113. Vandenbroucke M, Largeau C (2007) Kerogen origin, evolution and structure. Org Geochem 38:719–833CrossRefGoogle Scholar
  114. Walker JD, Colwell RR, Petrakis L (1975) Degradation of petroleum by an alga, Prototheca zopfii. Appl Environ Microbiol 30:79–81Google Scholar
  115. Waller RF, McFadden GI (2005) The apicoplast: a review of the derived plastid of apicomplexan parasites. Curr Issues Mol Biol 7:57–80PubMedGoogle Scholar
  116. Wang C, Liu H, Li J, Sun H (2014a) Degradation of PAHs in soil by Lasiodiplodia theobromae and enhanced benzo[a]pyrene degradation by the addition of Tween-80. Environ Sci Pollut Res 21:10614–10625CrossRefGoogle Scholar
  117. Wang Z, Yang C, Parrott JL, Frank RA, Yang Z, Brown CE, Hollebone BP, Landriault M, Fieldhouse B, Liu Y, Zhang G (2014b) Forensic source differentiation of petrogenic, pyrogenic, and biogenic hydrocarbons in Canadian oil sands environmental samples. J Hazard Mater 271:166–177CrossRefPubMedGoogle Scholar
  118. Warshawsky D, Cody T, Radike M, Reilman R, Schumann B, LaDow K, Schneider J (1995) Biotransformation of benzo[a]pyrene and other polycyclic aromatic hydrocarbons and heterocyclic analogs by several green algae and other algal species under gold and white light. Chem Biol Interact 97:131–148CrossRefPubMedGoogle Scholar
  119. Warshawsky D, LaDow K, Schneider J (2007) Enhanced degradation of benzo[a]pyrene by Mycobacterium sp. in conjunction with green alga. Chemosphere 69:500–506CrossRefPubMedGoogle Scholar
  120. Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271PubMedPubMedCentralGoogle Scholar
  121. Wolff G, Plante I, Lang BF, Kück U, Burger G (1994) Complete sequence of the mitochondrial DNA of the chlorophyte alga Prototheca wickerhamii: gene content and genome organization. J Mol Biol 237:75–86CrossRefPubMedGoogle Scholar
  122. World Register of Marine Species (2017)
  123. Wunch KG, Feibelman T, Bennett JW (1997) Screening for fungi capable of removing benzo[a]pyrene in culture. Appl Microbiol Biotechnol 47:620–624CrossRefGoogle Scholar
  124. Yanto DH, Tachibana S (2013) Biodegradation of petroleum hydrocarbons by a newly isolated Pestalotiopsis sp. NG007. Int Biodeter Biodegr 85:438–450CrossRefGoogle Scholar
  125. Yanto DH, Tachibana S (2014) Potential of fungal co-culturing for accelerated biodegradation of petroleum hydrocarbons in soil. J Hazard Mater 278:454–463CrossRefPubMedGoogle Scholar
  126. Yemashova NA, Murygina VP, Zhukov DV, Zakharyantz AA, Gladchenko MA, Appanna V, Kalyuzhnyi SV (2007) Biodeterioration of crude oil and oil derived products: a review. Rev Environ Sci Bio/Technol 6:315–337Google Scholar
  127. Zinjarde SS, Pant AA (2002) Hydrocarbon degraders from tropical marine environments. Mar Pollut Bull 44:118–121CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Stonybrook ApiaryPittstownUSA

Personalised recommendations