Facultative Methane Oxidizers

Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)


Most aerobic methanotrophic bacteria grow only on C1 compounds (methane, methanol, formate, formaldehyde, or methylamines). However, facultative methanotrophs are able to use either methane or some non-C1 compounds as their sole energy sources. The existence of such bacteria was a controversial topic until facultative methanotrophy was conclusively demonstrated in members of the genus Methylocella, which are widely distributed in acidic and neutral terrestrial environments. Methylocella species are morphologically and genetically unlike obligate methanotrophs in several ways. They lack a particulate, membrane-bound methane monooxygenase that is nearly universal to methanotrophs and instead use only a soluble form of this enzyme for methane oxidation. The latter is repressed if an alternative multicarbon growth substrate is present. Methylocella spp. can grow on a range of alternative substrates including acetate, pyruvate, succinate, malate, ethanol, propane, ethane, propanol, propanediol, acetone, methyl acetate, acetol, glycerol, propionate, tetrahydrofuran, and gluconate. More limited facultative methanotrophy has also been demonstrated in several alphaproteobacterial methanotrophs of the genera Methylocystis and Methylocapsa, as well as in verrucomicrobial methanotrophs of the genus “Methylacidiphilum.” Unlike Methylocella spp., these methanotrophs all possess particulate methane monooxygenase, and growth is limited to only one or two alternative substrates (acetate, ethanol, or H2, depending on the strain). The metabolic flexibility of facultative methanotrophs offers new biotechnological potential and calls for revising our outlook on methane cycling in the environment.


GAF domains

(Found in cGMP-phosphodiesterases adenylyl cyclases and FhlA, where FhlA is formate hydrogen-lyase transcriptional activator) are small-molecule-binding domains present in signal transduction proteins in organisms from all phyla


Phospholipid fatty acid


Particulate methane monooxygenase


Reverse transcription polymerase chain reaction


Sodium dodecyl sulfate polyacrylamide gel electrophoresis


Soluble methane monooxygenase

TCA cycle

Tricarboxylic acid cycle

EMC pathway

Ethylmalonyl-coenzyme A pathway, PrMO Propane monooxygenase, SDIMO Soluble di-iron monooxygenase, ICM Intracytoplasmic pathway membranes


  1. Belova SE, Baani M, Suzina NE, Bodelier PL, Liesack W, Dedysh SN (2011) Acetate utilization as a survival strategy of peat-inhabiting Methylocystis species. Environ Microbiol Rep 3:36–46CrossRefPubMedGoogle Scholar
  2. Belova SE, Kulichevskaya IS, Bodelier PL, Dedysh SN (2013) Methylocystis bryophila sp. nov., a facultatively methanotrophic bacterium from acidic Sphagnum peat, and emended description of the genus Methylocystis (ex. Whittenbury et al. 1970) Bowman et al. 1993. Int J Syst Evol Microbiol 63:1096–1104CrossRefPubMedGoogle Scholar
  3. Carere CR, Hards K, Houghton KM, Power JF, McDonald B, Collet C, Gapes DJ, Sparling R, Boyd ES, Cook GM, Greening C, Stott MB (2017) Mixotrophy drives niche expansion of verrucomicrobial methanotrophs. ISME J 11:2599CrossRefPubMedPubMedCentralGoogle Scholar
  4. Chen Y, Dumont MG, McNamara NP, Chamberlain PM, Bodrossy L, Stralis-Paverse N, Murrell JC (2008) Diversity of the active methanotrophic community in acidic peatlands as assessed by mRNA and SIP-PLFA analyses. Environ Microbiol 10:446–459CrossRefPubMedGoogle Scholar
  5. Chen Y, Crombie A, Tanvir Rahman M, Dedysh S, Liesack W, Stott MB, Alam M, Theisen AR, Murrell JC, Dunfield PF (2010) Complete genome sequence of the aerobic facultative methanotroph Methylocella silvestris BL2. J Bacteriol 192:3840–3841CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cockell CS, Pybus D, Olsson-Francis K, Kelly L, Petley D, Rosser N, Howard K, Mosselmans F (2011) Molecular characterization and geological microenvironment of a microbial community inhabiting weathered receding shale cliffs. Microb Ecol 61:166–181CrossRefPubMedGoogle Scholar
  7. Colby J, Stirling DI, Dalton H (1977) The soluble methane mono-oxygenase of Methylococcus capsulatus (Bath). Its ability to oxygenate n-alkanes, n-alkenes, ethers, and alicyclic, aromatic and heterocyclic compounds. Biochem J 165:395–402CrossRefPubMedPubMedCentralGoogle Scholar
  8. Crombie AT, Murrell JC (2014) Trace-gas metabolic versatility of the facultative methanotroph Methylocella silvestris. Nature 510:148–151CrossRefPubMedGoogle Scholar
  9. Csaki R, Bodrossy L, Klem J, Murrell JC, Kovacs KL (2003) Genes involved in the copper-dependent regulation of soluble methane monooxygenase of Methylococcus capsulatus (Bath): cloning, sequencing and mutational analysis. Microbiology 149:1785–1795CrossRefPubMedGoogle Scholar
  10. Dedysh SN, Dunfield PF (2011) Facultative and obligate methanotrophs: how to identify and differentiate them. Methods Enzymol 495B:31–44CrossRefGoogle Scholar
  11. Dedysh SN, Dunfield PF (2016) Beijerinckiaceae. In: Bergey’s Manual of Systematics of Archaea and Bacteria, (eds W. B. Whitman, F. Rainey, P. Kämpfer, M. Trujillo, J. Chun, P. DeVos, B. Hedlund and S. Dedysh).
  12. Dedysh SN, Panikov NS, Liesack W, Großkopf R, Zhou J, Tiedje JM (1998) Isolation of acidophilic methane-oxidizing bacteria from northern peat wetlands. Science 282:281–284CrossRefPubMedGoogle Scholar
  13. Dedysh SN, Liesack W, Khmelenina VN, Suzina NE, Trotsenko YA, Semrau JD, Abing AM, Panikov NS, Tiedje JM (2000) Methylocella palustris gen. nov., sp. nov., a new methane-oxidizing acidophilic bacterium from peat bogs, representing a novel subtype of serine-pathway methanotrophs. Int J Syst Evol Microbiol 50:955–969CrossRefPubMedGoogle Scholar
  14. Dedysh SN, Derakshani M, Liesack W (2001) Detection and enumeration of methanotrophs in acidic Sphagnum peat by 16S rRNA fluorescence in situ hybridization, including the use of newly developed oligonucleotide probes for Methylocella palustris. Appl Environ Microbiol 67:4850–4857CrossRefPubMedPubMedCentralGoogle Scholar
  15. Dedysh SN, Dunfield PF, Trotsenko YA (2004a) Methane utilization by Methylobacterium species: new evidence but still no proof for an old controversy. Int J Syst Evol Microbiol 54:1919–1920CrossRefPubMedGoogle Scholar
  16. Dedysh SN, Berestovskaya YY, Vasylieva LV, Belova SE, Khmelenina VN, Suzina NE, Trotsenko YA, Liesack W, Zavarzin GA (2004b) Methylocella tundrae sp. nov., a novel methanotrophic bacterium from acidic peatlands of tundra. Int J Syst Evol Microbiol 54:151–156CrossRefPubMedGoogle Scholar
  17. Dedysh SN, Knief C, Dunfield PF (2005a) Methylocella species are facultatively methanotrophic. J Bacteriol 187:4665–4670CrossRefPubMedPubMedCentralGoogle Scholar
  18. Dedysh SN, Smirnova KV, Khmelenina VN, Suzina NE, Liesack W, Trotsenko YA (2005b) Methylotrophic autotrophy in Beijerinckia mobilis. J Bacteriol 187:3884–3888CrossRefPubMedPubMedCentralGoogle Scholar
  19. Dedysh SN, Didriksen A, Danilova OV, Belova SE, Liebner S, Svenning MM (2015) Methylocapsa palsarum sp. nov., a methanotroph isolated from a subArctic discontinuous permafrost ecosystem. Int J Syst Evol Microbiol 65:3618–3624CrossRefPubMedGoogle Scholar
  20. Dedysh SN, Haupt ES, Dunfield PF (2016) Emended description of the family Beijerinckiaceae and transfer of the genera Chelatococcus and Camelimonas to the family Chelatococcaceae fam. nov. Int J Syst Evol Microbiol 66:3177–3182CrossRefPubMedGoogle Scholar
  21. Dunfield PF, Dedysh SN (2014) Methylocella: a gourmand among methanotrophs. Trends Microbiol 22:368–369CrossRefPubMedGoogle Scholar
  22. Dunfield PF, Khmelenina VN, Suzina NE, Trotsenko YA, Dedysh SN (2003) Methylocella silvestris sp. nov. a novel methanotrophic bacterium isolated from an acidic forest cambisol. Int J Syst Evol Microbiol 53:1231–1239CrossRefPubMedGoogle Scholar
  23. Dunfield PF, Belova SE, Vorob’ev AV, Cornish SL, Dedysh SN (2010) Methylocapsa aurea sp. nov., a facultatively methanotrophic bacterium possessing a particulate methane monooxygenase. Int J Syst Evol Microbiol 60:2659–2664CrossRefPubMedGoogle Scholar
  24. Green PN, Bousfield IJ (1983) Emendation of Methylobacterium Patt, Cole, and Hanson 1976; Methylobacterium rhodinum (Heumann 1962) comb. nov. corrig.; Methylobacterium radiotolerans (Ito and Iizuka 1971) comb. nov. corrig.; and Methylobacterium mesophilicum (Austin and Goodfellow 1979) comb. nov. Int J Syst Bacteriol 33:875–877CrossRefGoogle Scholar
  25. Greening C, Biswas A, Carere CR, Jackson CJ, Taylor MC, Stott MB (2016) Genome and metagenome surveys of hydrogenase diversity indicate H2 is a widely-utilised energy source for microbial growth and survival. ISME J 10:761–777CrossRefPubMedGoogle Scholar
  26. Han B, Chen Y, Abell G, Jiang H, Bodrossy L, Zhao J, Murrell JC, Xing XH (2009) Diversity and activity of methanotrophs in alkaline soil from a Chinese coal mine. FEMS Microbiol Ecol 70:40–51CrossRefPubMedGoogle Scholar
  27. Hanczár T, Csáki R, Bodrossy L, Murrell CJ, Kovács KL (2002) Detection and localization of two hydrogenases in Methylococcus capsulatus (Bath) and their potential role in methane metabolism. Arch Microbiol 177:167–172CrossRefPubMedGoogle Scholar
  28. Hou S, Makarova KS, Saw JH, Senin P, Ly BV, Zhou Z, Ren Y, Wang J, Galperin MY, Omelchenko MV, Wolf YI, Yutin N, Koonin EV, Stott MB, Mountain BW, Crowe MA, Smirnova AV, Dunfield PF, Feng L, Wang L, Alam M (2008) Complete genome sequence of the extremely acidophilic methanotroph isolate V4, Methylacidiphilum infernorum, a representative of the bacterial phylum Verrucomicrobia. Biol Direct 3:26CrossRefPubMedPubMedCentralGoogle Scholar
  29. Im J, Semrau JD (2011) Pollutant degradation by a Methylocystis strain SB2 grown on ethanol: bioremediation via facultative methanotrophy. FEMS Microbiol Lett 318:137–142CrossRefPubMedGoogle Scholar
  30. Im J, Lee S-W, Yoon S, DiSpirito AA, Semrau JD (2011) Characterization of a novel facultative Methylocystis species capable of growth on methane, acetate and ethanol. Environ Microbiol Rep 3:174–181CrossRefPubMedGoogle Scholar
  31. Kallistova AY, Montonen L, Jurgens G, Münster U, Kevbrina MV, Nozhevnikova AN (2013) Culturable psychrotolerant methanotrophic bacteria in landfill cover soil. Mikrobiologiia 82:109–118Google Scholar
  32. Kalyuzhnaya MG, Yang S, Rozova ON, Smalley NE, Clubb J, Lamb A, Gowda GA, Raftery D, Fu Y, Bringel F, Vuilleumier S, Beck DA, Trotsenko YA, Khmelenina VN, Lidstrom ME (2013) Highly efficient methane biocatalysis revealed in a methanotrophic bacterium. Nat Commun 4:2785CrossRefPubMedGoogle Scholar
  33. Kelly DP, Anthony C, Murrell JC (2005) Insights into the obligate methanotroph Methylococcus capsulatus. Trends Microbiol 13:195–198CrossRefPubMedGoogle Scholar
  34. Khadem AF, Pol A, Wieczorek A, Mohammadi SS, Francoijs KJ, Stunnenberg HG, Jetten MS, Op den Camp HJ et al (2011) Autotrophic methanotrophy in verrucomicrobia: Methylacidiphilum fumariolicum SolV uses the Calvin-Benson-Bassham cycle for carbon dioxide fixation. J Bacteriol 193:4438–4446CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kits KD, Klotz MG, Stein LY (2015) Methane oxidation coupled to nitrate reduction under hypoxia by the gammaproteobacterium Methylomonas denitrificans, sp. nov. type strain FJG1. Environ Microbiol 17:3219–3232CrossRefPubMedGoogle Scholar
  36. Knief C (2015) Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker. Front Microbiol 6:1346CrossRefPubMedPubMedCentralGoogle Scholar
  37. Leng L, Chang J, Geng K, Lu Y, Ma K (2014) Uncultivated Methylocystis species in paddy soil include facultative methanotrophs that utilize acetate. Microb Ecol 70:88–96CrossRefPubMedGoogle Scholar
  38. Marx CJ, Bringel F, Chistoserdova L, Moulin L, Farhan Ul Haque M, Fleischman DE, Gruffaz C, Jourand P, Knief C, Lee MC, Muller EE, Nadalig T, Peyraud R, Roselli S, Russ L, Goodwin LA, Ivanova N, Kyrpides N, Lajus A, Land ML, Médigue C, Mikhailova N, Nolan M, Woyke T, Stolyar S, Vorholt JA, Vuilleumier S (2012) Complete genome sequences of six strains of the genus Methylobacterium. J Bacteriol 194:4746–4748CrossRefPubMedPubMedCentralGoogle Scholar
  39. Miller DN, Yavitt JB, Madsen EL, Ghiorse WC (2004) Methanotrophic activity, abundance, and diversity in forested swamp pools: spatiotemporal dynamics and influences on methane fluxes. Geomicrobiol J 21:257–271CrossRefGoogle Scholar
  40. Mohammadi S, Pol A, van Alen TA, Jetten MSM, Op den Camp HJM (2017) Methylacidiphilum fumariolicum SolV, a thermoacidophilic ‘Knallgas’ methanotroph with both an oxygen-sensitive and -insensitive hydrogenase. ISME J 11:945–958CrossRefPubMedGoogle Scholar
  41. Morris SA, Radajewski S, Willison TW, Murrell JC (2002) Identification of the functionally active methanotroph population in a peat soil microcosm by stable-isotope probing. Appl Environ Microbiol 68:1446–1453CrossRefPubMedPubMedCentralGoogle Scholar
  42. Murrell JC, McDonald IR, Gilbert B (2000) Regulation of methane monooxygenase genes by copper ions. Trends Microbiol 8:221–225CrossRefPubMedGoogle Scholar
  43. Op den Camp HJ, Islam T, Stott MB, Harhangi HR, Hynes A, Schouten S, Jetten MS, Birkeland NK, Pol A, Dunfield PF (2009) Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. Environ Microbiol Rep 1:293–306CrossRefPubMedGoogle Scholar
  44. Patel SKS, Mardina P, Kim SY, Lee JK, Kim IW (2016) Biological methanol production by a type II methanotroph Methylocystis bryophila. J Microbiol Biotechnol 26:717–724CrossRefPubMedGoogle Scholar
  45. Patt TE, Cole GC, Bland J, Hanson RS (1974) Isolation and characterization of bacteria that grow on methane and organic compounds as sole sources of carbon and energy. J Bacteriol 120:955–964PubMedPubMedCentralGoogle Scholar
  46. Pudasaini S, Wilson J, Ji M, van Dorst J, Snape I, Palmer AS, Burns BP, Ferrari BC (2017) Microbial diversity of Browning Peninsula, Eastern Antarctica revealed using molecular and cultivation methods. Front Microbiol 8:591CrossRefPubMedPubMedCentralGoogle Scholar
  47. Putkinen A, Larmola T, Tuomivirta T, Siljanen HMP, Bodrossy L, Tuittila ES, Fritze H (2014) Peatland succession induces a shift in the community composition of Sphagnum-associated active methanotrophs. FEMS Microbiol Ecol 88:596–611CrossRefPubMedGoogle Scholar
  48. Radajewski S, Webster G, Reay DS, Morris SA, Ineson P, Nedwell DB, Prosser JI, Murrell JC (2002) Identification of active methylotroph populations in an acidic forest soil by stable-isotope probing. Microbiology 148:2331–2342CrossRefPubMedGoogle Scholar
  49. Rahman MT, Crombie A, Chen Y, Stralis-Pavese N, Bodrossy L, Meir P, McNamara NP, Murrell JC (2011) Environmental distribution and abundance of the facultative methanotroph Methylocella. ISME J 5:1061–1066CrossRefPubMedGoogle Scholar
  50. Semrau JD (2011) Bioremediation via methanotrophy: overview of recent findings and suggestions for future research. Front Microbiol 2:209CrossRefPubMedPubMedCentralGoogle Scholar
  51. Semrau JD, DiSpirito AA, Vuilleumier S (2011) Facultative methanotrophy: false reads, true results, and suggestions for further research. FEMS Microbiol Lett 323:1–12CrossRefPubMedGoogle Scholar
  52. Shah NN, Hanna ML, Jackson KJ, Taylor RT (1995) Batch cultivation of Methylosinus trichosporium OB3B: IV. Production of hydrogen-driven soluble or particulate methane monooxygenase activity. Biotechnol Bioeng 45:229–238CrossRefPubMedGoogle Scholar
  53. Sharp CE, Smirnova AV, Graham JM, Stott MB, Khadka R, Moore TR, Grasby SE, Strack M, Dunfield PF (2014) Distribution and diversity of Verrucomicrobia methanotrophs in geothermal and acidic environments. Environ Microbiol 16:1867–1878CrossRefPubMedGoogle Scholar
  54. Shishkina VN, Trotsenko YA (1982) Multiple enzymic lesions in obligate methanotrophic bacteria. FEMS Microbiol Lett 13:237–242CrossRefGoogle Scholar
  55. Stanley SH, Prior SD, Leak DJ, Dalton H (1983) Copper stress underlies the fundamental change in intracellular location of methane monooxygenase in methane-oxidising organisms: studies in batch and continuous cultures. Biotechnol Lett 5:487–492CrossRefGoogle Scholar
  56. Tamas I, Smirnova AV, He Z, Dunfield PF (2014) The (d)evolution of methanotrophy in the Beijerinckiaceae, a comparative genomics analysis. ISME J 8:369–382CrossRefPubMedGoogle Scholar
  57. Theisen AR, Murrell JC (2005) Facultative methanotrophs revisited. J Bacteriol 187:4303–4305CrossRefPubMedPubMedCentralGoogle Scholar
  58. Theisen AR, Ali MH, Radajewski S, Dumont MG, Dunfield PF, McDonald IR, Dedysh SN, Miguez CB, Murrell JC (2005) Regulation of methane oxidation in the facultative methanotroph Methylocella silvestris BL2. Mol Microbiol 58:682–692CrossRefPubMedGoogle Scholar
  59. Vorobev A, Jagadevan S, Jain S, Anantharaman K, Dick GJ, Vuilleumier S, Semrau JD (2014) Genomic and transcriptomic analyses of the facultative methanotroph Methylocystis sp. strain SB2 grown on methane or ethanol. Appl Environ Microbiol 80:3044–3052CrossRefPubMedPubMedCentralGoogle Scholar
  60. Vuilleumier S, Chistoserdova L, Lee M-C, Bringel F, Lajus A, Zhou Y, Gourion B, Barbe V, Chang J, Cruveiller S, Dossat C, Gillett W, Gruffaz C, Haugen E, Hourcade E, Levy R, Mangenot S, Muller E, Nadalig T, Pagni M, Penny C, Peyraud R, Robinson DG, Roche D, Rouy Z, Saenampechek C, Salvignol G, Vallenet D, Wu Z, Marx CJ, Vorholt JA, Olson MV, Kaul R, Weissenbach J, Médigue C, Lidstrom ME (2009) Methylobacterium genome sequences: a reference blueprint to investigate microbial metabolism of C1 compounds from natural and industrial sources. PLoS One 4:e5584CrossRefPubMedPubMedCentralGoogle Scholar
  61. Ward N, Larsen O, Sakwa J, Bruseth L, Khouri H, Durkin AS et al (2004) Genomic insights into methanotrophy: the complete genome sequence of Methylococcus capsulatus (Bath). PLoS Biol 2:E303CrossRefPubMedPubMedCentralGoogle Scholar
  62. West AE, Schmidt SK (1999) Acetate stimulates atmospheric CH 4 oxidation by an alpine tundra soil. Soil Biol Biochem 31:1649–1655CrossRefGoogle Scholar
  63. Wieczorek AS, Drake HL, Kolb S (2011) Organic acids and ethanol inhibit the oxidation of methane by mire methanotrophs. FEMS Microbiol Ecol 77:28–39CrossRefPubMedGoogle Scholar
  64. Wood AP, Aurikko JP, Kelly DP (2004) A challenge for 21st century molecular biology and biochemistry: what are the causes of obligate autotrophy and methanotrophy? FEMS Microbiol Rev 28:335–352CrossRefPubMedGoogle Scholar
  65. Yoon S, Im J, Bandow N, DiSpirito AA, Semrau JD (2011) Constitutive expression of pMMO by Methylocystis strain SB2 when grown on multi-carbon substrates: implications for biodegradation of chlorinated ethenes. Environ Microbiol Rep 3:182–188CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Winogradsky Institute of Microbiology, Research Center of BiotechnologyRussian Academy of SciencesMoscowRussia
  2. 2.Department of Biological SciencesUniversity of CalgaryCalgaryCanada

Personalised recommendations