Anaerobic Methane Oxidizers

  • K. KnittelEmail author
  • Gunter Wegener
  • A. BoetiusEmail author
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)


The anaerobic oxidation of methane (AOM) with sulfate as the final electron acceptor according to the net reaction CH4 + SO42− → HCO3 + HS + H2O is the major sink of methane in the ocean floor and hence a significant process in the marine methane budget and the global carbon cycle. Since its discovery, much has been learned about the distribution of the AOM process, its activity in different settings, and connections to other metabolic reactions in the seafloor. AOM is performed by consortia of anaerobic methane-oxidizing archaea (ANME) and sulfate-reducing bacteria (SRB). Since all known ANME and most of their partner bacteria have so far resisted isolation, the physiology of both organisms has been largely inferred from culture-independent approaches on natural enrichments or enrichment cultures. All known ANME are related to methanogenic Euryarchaeota, and as such they reverse the methanogenesis pathway to activate and completely oxidize methane. The reducing equivalents are shuttled to the partner bacteria, which use them for sulfate reduction. Recently, evidence has been found for ANME that can use nitrate or iron as electron acceptors. The exact mechanisms for the required exchange of reducing equivalents in AOM and their genetic codes are yet poorly understood, but recently discovered accumulations of cytochromes and nanowire connections in the intercellular space of the consortia suggest direct electron transfer between both partners.


  1. Arshad A, Speth DR, de Graaf RM, Op den Camp HJM, Jetten MSM, Welte CU (2015) A metagenomics-based metabolic model of nitrate-dependent anaerobic oxidation of methane by Methanoperedens-like archaea. Front Microbiol 6:1423PubMedPubMedCentralCrossRefGoogle Scholar
  2. Barnes RO, Goldberg ED (1976) Methane production and consumption in anoxic marine sediments. Geology 4:297–300CrossRefGoogle Scholar
  3. Beal EJ, House CH, Orphan VJ (2009) Manganese- and iron-dependent marine methane oxidation. Science 325:184–187PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bhattarai S, Cassarini C, Gonzalez-Gil G, Egger M, Slomp CP, Zhang Y, Esposito G, Lens PN (2017) Anaerobic methane-oxidizing microbial community in a coastal marine sediment: anaerobic methanotrophy dominated by ANME-3. Microb Ecol 74:608–622PubMedCrossRefGoogle Scholar
  5. Biddle JF, Lipp JS, Lever MA, Lloyd KG, Sorensen KB, Anderson R, Fredricks HF, Elvert M, Kelly TJ, Schrag DP, Sogin ML, Brenchley JE, Teske A, House CH, Hinrichs K-U (2006) Heterotrophic archaea dominate sedimentary subsurface ecosystems off Peru. Proc Natl Acad Sci U S A 103:3846–3851PubMedPubMedCentralCrossRefGoogle Scholar
  6. Blumenberg M, Seifert R, Reitner J, Pape T, Michaelis W (2004) Membrane lipid patterns typify distinct anaerobic methanotrophic consortia. Proc Natl Acad Sci U S A 101:11111–11116PubMedPubMedCentralCrossRefGoogle Scholar
  7. Boetius A, Ravenschlag K, Schubert C, Rickert D, Widdel F, Gieseke A, Amann R, Jørgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626PubMedCrossRefGoogle Scholar
  8. Brazelton WJ, Schrenk MO, Kelley DS, Baross JA (2006) Methane- and sulfur-metabolizing microbial communities dominate the Lost City hydrothermal field ecosystem. Appl Environ Microbiol 72:6257–6270PubMedPubMedCentralCrossRefGoogle Scholar
  9. Case DH, Pasulka AL, Marlow JJ, Grupe BM, Levin LA, Orphan VJ (2015) Methane seep carbonates host distinct, diverse, and dynamic microbial assemblages. MBio 6:e01348–e01315PubMedPubMedCentralCrossRefGoogle Scholar
  10. Dale AW, Regnier P, Knab NJ, Jorgensen BB, Van Cappellen P (2008) Anaerobic oxidation of methane (AOM) in marine sediments from the Skagerrak (Denmark): II. Reaction-transport modeling. Geochim Cosmochim Acta 72:2880–2894CrossRefGoogle Scholar
  11. Dekas AE, Poretsky RS, Orphan VJ (2009) Deep-sea archaea fix and share nitrogen in methane-consuming microbial consortia. Science 326:422–426PubMedCrossRefGoogle Scholar
  12. Dekas AE, Connon SA, Chadwick GL, Trembath-Reichert E, Orphan VJ (2016) Activity and interactions of methane seep microorganisms assessed by parallel transcription and FISH-NanoSIMS analyses. ISME J 10:678–692PubMedCrossRefGoogle Scholar
  13. Drake H, Heim C, Roberts NM, Zack T, Tillberg M, Broman C, Ivarsson M, Whitehouse MJ, Åström ME (2017) Isotopic evidence for microbial production and consumption of methane in the upper continental crust throughout the Phanerozoic eon. Earth Planet Sci Lett 470:108–118CrossRefGoogle Scholar
  14. Elvert M, Suess E, Whiticar MJ (1999) Anaerobic methane oxidation associated with marine gas hydrates: superlight C-isotopes from saturated and unsaturated C 20 and C 25 irregular isoprenoids. Naturwissenschaften 86:295–300CrossRefGoogle Scholar
  15. Elvert M, Boetius A, Knittel K, Jørgensen BB (2003) Characterization of specific membrane fatty acids as chemotaxonomic markers for sulfate-reducing bacteria involved in anaerobic oxidation of methane. Geomicrobiol J 20:403–419CrossRefGoogle Scholar
  16. Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MM et al (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464:543–548PubMedCrossRefGoogle Scholar
  17. Ettwig KF, Zhu B, Speth D, Keltjens JT, Jetten MS, Kartal B (2016) Archaea catalyze iron-dependent anaerobic oxidation of methane. Proc Natl Acad Sci U S A 113:12792–12796PubMedPubMedCentralCrossRefGoogle Scholar
  18. Evans PN, Parks DH, Chadwick GL, Robbins SJ, Orphan VJ, Golding SD, Tyson GW (2015) Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science 350:434–438PubMedPubMedCentralCrossRefGoogle Scholar
  19. Hallam SJ, Girguis PR, Preston CM, Richardson PM, DeLong EF (2003) Identification of methyl coenzyme M reductase A (mcrA) genes associated with methane-oxidizing archaea. Appl Environ Microbiol 69:5483–5491PubMedPubMedCentralCrossRefGoogle Scholar
  20. Hallam SJ, Putnam N, Preston CM, Detter JC, Rokhsar D, Richardson PM, DeLong EF (2004) Reverse methanogenesis: testing the hypothesis with environmental genomics. Science 305:1457–1462CrossRefGoogle Scholar
  21. Haroon MF, Hu S, Shi Y, Imelfort M, Keller J, Hugenholtz P, Yuan Z, Tyson GW (2013) Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500:567–570PubMedPubMedCentralCrossRefGoogle Scholar
  22. Hatzenpichler R, Connon SA, Goudeau D, Malmstrom RR, Woyke T, Orphan VJ (2016) Visualizing in situ translational activity for identifying and sorting slow-growing archaeal − bacterial consortia. Proc Natl Acad Sci U S A 113:E4069–E4078PubMedPubMedCentralCrossRefGoogle Scholar
  23. Hinrichs K-U, Boetius A (2002) The anaerobic oxidation of methane: new insights in microbial ecology and biogeochemistry. In: Wefer G, Billett D, Hebbeln D, Jørgensen BB, Schlüter M, van Weering T (eds) Ocean margin systems. Springer, Berlin, pp 457–477CrossRefGoogle Scholar
  24. Hinrichs KU, Hayes JM, Sylva SP, Brewer PG, DeLong EF (1999) Methane-consuming archaebacteria in marine sediments. Nature 398:802–805PubMedCrossRefGoogle Scholar
  25. Hoehler TM, Alperin MJ, Albert DB, Martens CS (1994) Field and laboratory studies of methane oxidation in an anoxic marine sediment: evidence for a methanogen-sulfate reducer consortium. Glob Biogeochem Cycles 8:451–463CrossRefGoogle Scholar
  26. Holler T, Widdel F, Knittel K, Amann R, Kellermann MY, Hinrichs K-U, Teske A, Boetius A, Wegener G (2011) Thermophilic anaerobic oxidation of methane by marine microbial consortia. ISME J 5:1946–1956PubMedPubMedCentralCrossRefGoogle Scholar
  27. Inagaki F, Kuypers MMM, Tsunogai U, Ishibashi J, Nakamura K, Treude T, Ohkubo S, Nakaseama M, Gena K, Chiba H, Hirayama H, Nunoura T, Takai K, Jørgensen BB, Horikoshi K, Boetius A (2006) Microbial community in a sediment-hosted CO2 lake of the southern Okinawa Trough hydrothermal system. Proc Natl Acad Sci U S A 103:14164–14169PubMedPubMedCentralCrossRefGoogle Scholar
  28. Iversen N, Jørgensen JN (1985) Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark). Limnol Oceanogr 30:944–955CrossRefGoogle Scholar
  29. Kallmeyer J, Boetius A (2004) Effects of temperature and pressure on sulfate reduction and anaerobic oxidation of methane in hydrothermal sediments of Guaymas Basin. Appl Environ Microbiol 70:1231–1233PubMedPubMedCentralCrossRefGoogle Scholar
  30. Kellermann MY, Wegener G, Elvert M, Yoshinaga MY, Lin Y-S, Holler T, Mollar XP, Knittel K, Hinrichs K-U (2012) Autotrophy as a predominant mode of carbon fixation in anaerobic methane-oxidizing microbial communities. Proc Natl Acad Sci U S A 109:19321–19326PubMedPubMedCentralCrossRefGoogle Scholar
  31. Kelley DS, Karson JA, Fruh-Green GL, Yoerger DR, Shank TM, Butterfield DA, Hayes JM, Schrenk MO, Olson EJ, Proskurowski G, Jakuba M, Bradley A, Larson B, Ludwig K, Glickson D, Buckman K, Bradley AS, Brazelton WJ, Roe K, Elend MJ, Delacour A, Bernasconi SM, Lilley MD, Baross JA, Summons RE, Sylva SP (2005) A serpentinite-hosted ecosystem: the lost City hydrothermal field. Science 307:1428–1434PubMedCrossRefGoogle Scholar
  32. Kleindienst S, Ramette A, Amann R, Knittel K (2012) Distribution and in situ abundance of sulfate-reducing bacteria in diverse marine hydrocarbon seep sediments. Environ Microbiol 14:2689–2710PubMedCrossRefPubMedCentralGoogle Scholar
  33. Knittel K, Boetius A (2009) Anaerobic oxidation of methane: progress with an unknown process methane. Annu Rev Microbiol 63:311–334PubMedCrossRefGoogle Scholar
  34. Knittel K, Lösekann T, Boetius A, Kort R, Amann R (2005) Diversity and distribution of methanotrophic archaea at cold seeps. Appl Environ Microbiol 71:467–479PubMedPubMedCentralCrossRefGoogle Scholar
  35. Krüger M, Meyerdierks A, Glöckner FO, Meyerdierks A, Amann R, Widdel F, Kube M, Reinhardt R, Kahnt J, Bocher R, Thauer RK, Shima S (2003) A conspicuous nickel protein in microbial mats that oxidize methane anaerobically. Nature 426:878–881PubMedCrossRefGoogle Scholar
  36. Krüger M, Blumenberg M, Kasten S, Wieland A, Kanel L, Klock J-H, Michaelis W, Seifert R (2008) A novel, multi-layered methanotrophic microbial mat system growing on the sediment of the Black Sea. Environ Microbiol 10:1934–1947PubMedCrossRefGoogle Scholar
  37. Krukenberg V, Harding K, Richter M, Glöckner FO, Gruber-Vodicka HR, Adam B, Berg JS, Knittel K, Tegetmeyer HE, Boetius A, Wegener G (2016) Candidatus Desulfofervidus auxilii, a hydrogenotrophic sulfate-reducing bacterium involved in the thermophilic anaerobic oxidation of methane. Environ Microbiol 18:3073–3091PubMedCrossRefPubMedCentralGoogle Scholar
  38. Krukenberg V, Riedel D, Gruber-Vodicka HR, Buttigieg PL, Tegetmeyer HE, Boetius A, Wegener, G (2018) Gene expression and ultrastructure of meso- and thermophilic methanotrophic consortia. Environ Microbiol 20:1651–1666PubMedPubMedCentralCrossRefGoogle Scholar
  39. Laso-Pérez R, Wegener G, Knittel K, Widdel F, Harding KJ, Krukenberg V, Meier DV, Richter M, Tegetmeyer HE, Riedel D, Richnow H-H, Adrian L, Reemtsma T, Lechtenfeld OJ, Musat F (2016) Thermophilic archaea activate butane via alkyl-coenzyme M formation. Nature 539:396–401PubMedCrossRefPubMedCentralGoogle Scholar
  40. Leak DJ, Dalton H (1986) Growth yields of methanotrophs. Appl Microbiol Biotechnol 23:470–476CrossRefGoogle Scholar
  41. Lloyd KG, Lapham L, Teske A (2006) An anaerobic methane-oxidizing community of ANME-1b archaea in hypersaline Gulf of Mexico sediments. Appl Environ Microbiol 72:7218–7230PubMedPubMedCentralCrossRefGoogle Scholar
  42. Lösekann T, Knittel K, Nadalig T, Fuchs B, Niemann H, Boetius A, Amann R (2007) Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby Mud Volcano, Barents Sea. Appl Environ Microbiol 73:3348–3362PubMedPubMedCentralCrossRefGoogle Scholar
  43. Marlow JJ, Steele JA, Ziebis W, Thurber AR, Levin LA, Orphan VJ (2014) Carbonate-hosted methanotrophy represents an unrecognized methane sink in the deep sea. Nat Commun 5:5094PubMedCrossRefGoogle Scholar
  44. Martens CS, Berner RA (1974) Methane production in the interstitial waters of sulfate-depleted marine sediments. Science 185:1167–1169PubMedCrossRefGoogle Scholar
  45. Martinez RJ, Mills HJ, Story S, Sobecky PA (2006) Prokaryotic diversity and metabolically active microbial populations in sediments from an active mud volcano in the Gulf of Mexico. Environ Microbiol 8:1783–1796PubMedCrossRefGoogle Scholar
  46. Martinez-Cruz K, Leewis M-C, Herriott IC, Sepulveda-Jauregui A, Anthony KW, Thalasso F, Leigh MB (2017) Anaerobic oxidation of methane by aerobic methanotrophs in sub-Arctic lake sediments. Sci Total Environ 607:23–31PubMedCrossRefGoogle Scholar
  47. McGlynn SE (2017) Energy metabolism during anaerobic methane oxidation in ANME archaea. Microbes Environ 32:5–13PubMedPubMedCentralCrossRefGoogle Scholar
  48. McGlynn SE, Chadwick GL, Kempes CP, Orphan VJ (2015) Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature 526:532–535CrossRefGoogle Scholar
  49. Meyerdierks A, Kube M, Lombardot T, Knittel K, Bauer M, Glöckner FO, Reinhardt R, Amann R (2005) Insights into the genomes of archaea mediating the anaerobic oxidation of methane. Environ Microbiol 7:1937–1951PubMedCrossRefGoogle Scholar
  50. Meyerdierks A, Kube M, Kostadinov I, Teeling H, Glockner FO, Reinhardt R, Amann R (2010) Metagenome and mRNA expression analyses of anaerobic methanotrophic archaea of the ANME-1 group. Environ Microbiol 12:422–439PubMedCrossRefGoogle Scholar
  51. Michaelis W, Seifert R, Nauhaus K, Treude T, Thiel V, Blumenberg M, Knittel K, Gieseke A, Peterknecht K, Pape T, Boetius A, Amann R, Jørgensen BB, Widdel F, Peckmann J, Pimenov NV, Gulin MB (2002) Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane. Science 297:1013–1015PubMedCrossRefGoogle Scholar
  52. Mills HJ, Martinez RJ, Story S, Sobecky PA (2005) Characterization of microbial community structure in Gulf of Mexico gas hydrates: comparative analysis of DNA- and RNA-derived clone libraries. Appl Environ Microbiol 71:3235–3247PubMedPubMedCentralCrossRefGoogle Scholar
  53. Milucka J, Ferdelman TG, Polerecky L, Franzke D, Wegener G, Schmid M, Lieberwirth I, Wagner M, Widdel F, Kuypers MMM (2012) Zero-valent sulphur is a key intermediate in marine methane oxidation. Nature 491:541–546PubMedCrossRefGoogle Scholar
  54. Nauhaus K, Boetius A, Krüger M, Widdel F (2002) In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment from a marine gas hydrate area. Environ Microbiol 4:296–305PubMedCrossRefGoogle Scholar
  55. Nauhaus K, Albrecht M, Elvert M, Boetius A, Widdel F (2007) In vitro cell growth of marine archaeal-bacterial consortia during anaerobic oxidation of methane with sulfate. Environ Microbiol 9:187–196PubMedCrossRefGoogle Scholar
  56. Niemann H, Elvert M, Hovland M, Orcutt B, Judd A, Suck I, Gutt J, Joye S, Damm E, Finster K, Boetius A (2005) Methane emission and consumption at a North Sea gas seep (Tommeliten area). Biogeosciences 2:335–351CrossRefGoogle Scholar
  57. Niemann H, Liemann T, DeBeer D, Elvert M, Nadalig T, Knittel K, Amann R, Sauter EJ, Schlüter M, Klages M, Foucher JP, Boetius A (2006) Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink. Nature 443:854–858PubMedCrossRefGoogle Scholar
  58. Nunoura T, Oida H, Miyazaki J, Miyashita A, Imachi H, Takai K (2008) Quantification of mcrA by fluorescent PCR in methanogenic and methanotrophic microbial communities. FEMS Microbiol Ecol 64:240–247PubMedCrossRefGoogle Scholar
  59. Omoregie EO, Mastalerz V, de Lange G, Straub KL, Kappler A, Roy H, Stadnitskaia A, Foucher J-P, Boetius A (2008) Biogeochemistry and community composition of iron- and sulfur-precipitating microbial mats at the Chefren mud volcano (Nile Deep Sea fan, eastern Mediterranean). Appl Environ Microbiol 74:3198–3215PubMedPubMedCentralCrossRefGoogle Scholar
  60. Orcutt B, Boetius A, Elvert M, Samarkin V, Joye SB (2005) Molecular biogeochemistry of sulfate reduction, methanogenesis and the anaerobic oxidation of methane at Gulf of Mexico cold seeps. Geochim Cosmochim Acta 69:4267–4281CrossRefGoogle Scholar
  61. Orphan VJ, Hinrichs K-U, Ussler W III, Paull CK, Taylor LT, Sylva SP, Hayes JM, DeLong EF (2001) Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments. Appl Environ Microbiol 67:1922–1934PubMedPubMedCentralCrossRefGoogle Scholar
  62. Orphan VJ, House CH, Hinrichs K-U, McKeegan KD, DeLong EF (2002) Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments. Proc Natl Acad Sci U S A 99:7663–7668PubMedPubMedCentralCrossRefGoogle Scholar
  63. Pancost RD, Damsté JSS, de Lint S, van der Maarel MJEC, Gottschal JC, the Medinaut shipboard scientific party (2000) Biomarker evidence for widespread anaerobic methane oxidation in Mediterranean sediments by a consortium of methanogenic archaea and bacteria. Appl Environ Microbiol 66:1126–1132PubMedPubMedCentralCrossRefGoogle Scholar
  64. Pernthaler A, Dekas AE, Brown CT, Goffredi SK, Embaye T, Orphan VJ (2008) Diverse syntrophic partnerships from deep-sea methane vents revealed by direct cell capture and metagenomics. Proc Natl Acad Sci U S A 105:7052–7057PubMedPubMedCentralCrossRefGoogle Scholar
  65. Raghoebarsing AA, Pol A, van de Pas-Schoonen KT, Smolders AJP, Ettwig KF, Rijpstra WIC, Schouten S, Damsté JSS, Op den Camp HJM, MSM J, Strous M (2006) A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440:918–921PubMedCrossRefGoogle Scholar
  66. Reeburgh WS (1982) A major sink and flux control for methane in marine sediments: anaerobic consumption. In: Fanning K, Mannheim FT (eds) Dynamic environment of the ocean floor. Heath, Lexington, pp 203–217Google Scholar
  67. Reeburgh WS (2007) Oceanic methane biogeochemistry. Chem Rev 107:486–513PubMedCrossRefGoogle Scholar
  68. Reed AJ, Dorn R, Van Dover CL, Lutz RA, Vetriani C (2009) Phylogenetic diversity of methanogenic, sulfate-reducing and methanotrophic prokaryotes from deep-sea hydrothermal vents and cold seeps. Deep Sea Res Part II Top Stud Oceanogr 56:1665–1674CrossRefGoogle Scholar
  69. Reed DC, Deemer BR, van Grinsven S, Harrison JA (2017) Are elusive anaerobic pathways key methane sinks in eutrophic lakes and reservoirs? Biogeochemistry 134:29–39CrossRefGoogle Scholar
  70. Reitner J, Peckmann J, Blumenberg M, Michaelis W, Reimer A, Thiel V (2005) Concretionary methane-seep carbonates and associated microbial communities in Black Sea sediments. Palaegeogr Paleoclimatol Paleoecol 227:181–227Google Scholar
  71. Roland FA, Darchambeau F, Morana C, Bouillon S, Borges AV (2017) Emission and oxidation of methane in a meromictic, eutrophic and temperate lake (Dendre, Belgium). Chemosphere 168:756–764PubMedCrossRefGoogle Scholar
  72. Ruff, SE, Kuhfuss H, Wegener G, Lott C, Ramette A, Wiedling J, Knittel K, Weber M (2016) Microbial communities of shallow water methane cold seeps off Elba, Mediterranean Sea. Frontiers in Microbiol 7:374Google Scholar
  73. Ruff SE, Biddle JF, Teske AP, Knittel K, Boetius A, Ramette A (2015) Global dispersion and local diversification of the methane seep microbiome. Proc Natl Acad Sci U S A 112:4015–4020PubMedPubMedCentralCrossRefGoogle Scholar
  74. Scheller S, Yu H, Chadwick GL, McGlynn SE, Orphan VJ (2016) Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction. Science 351:703–707PubMedCrossRefGoogle Scholar
  75. Schouten S, Wakeham SG, Hopmans EC, Damsté JSS (2003) Biogeochemical evidence that thermophilic archaea mediate the anaerobic oxidation of methane. Appl Environ Microbiol 69:1680–1686PubMedPubMedCentralCrossRefGoogle Scholar
  76. Schreiber L, Holler T, Knittel K, Meyerdierks A, Amann R (2010) Identification of the dominant sulfate-reducing bacterial partner of anaerobic methanotrophs of the ANME-2 clade. Environ Microbiol 12:2327–2340PubMedPubMedCentralGoogle Scholar
  77. Schrenk MO, Kelley DS, Delaney JR, Baross JA (2003) Incidence and diversity of microorganisms within the walls of an active deep-sea sulfide chimney. Appl Environ Microbiol 69:3580–3592PubMedPubMedCentralCrossRefGoogle Scholar
  78. Shima S, Thauer RK (2005) Methyl-coenzyme M reductase and the anaerobic oxidation of methane in methanotrophic archaea. Curr Opin Microbiol 8:643–648PubMedCrossRefGoogle Scholar
  79. Sivan O, Antler G, Turchyn AV, Marlow JJ, Orphan VJ (2014) Iron oxides stimulate sulfate-driven anaerobic methane oxidation in seeps. Proc Natl Acad Sci U S A 111:E4139–E4147PubMedPubMedCentralCrossRefGoogle Scholar
  80. Skennerton CT, Chourey K, Iyer R, Hettich RL, Tyson GW, Orphan VJ (2017) Methane-fueled syntrophy through extracellular electron transfer: uncovering the genomic traits conserved within diverse bacterial partners of anaerobic methanotrophic archaea. MBio 8:e00530–e00517PubMedPubMedCentralGoogle Scholar
  81. Stadnitskaia A, Muyzer G, Abbas B, Coolen MJL, Hopmans EC, Baas M, van Weering TCE, Ivanov MK, Poludetkina E, Damsté JSS (2005) Biomarker and 16S rDNA evidence for anaerobic oxidation of methane and related carbonate precipitation in deep-sea mud volcanoes of the Sorokin Trough, Black Sea. Mar Geol 217:67–96CrossRefGoogle Scholar
  82. Steen IH, Dahle H, Stokke R, Roalkvam I, Daae F-L, Rapp HT, Pedersen RB, Thorseth IH (2016) Novel barite chimneys at the Loki’s Castle vent field shed light on key factors shaping microbial communities and functions in hydrothermal systems. Front Microbiol 6:1510PubMedPubMedCentralCrossRefGoogle Scholar
  83. Stokke R, Roalkvam I, Lanzen A, Haflidason H, Steen IH (2012) Integrated metagenomic and metaproteomic analyses of an ANME-1-dominated community in marine cold seep sediments. Environ Microbiol 14:1333–1346PubMedCrossRefGoogle Scholar
  84. Summers ZM, Fogarty HE, Leang C, Franks AE, Malvankar NS, Lovley DR (2010) Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic Bacteria. Science 330:1413–1415CrossRefGoogle Scholar
  85. Teske A, Hinrichs K-U, Edgcomb V, de Vera Gomez A, Kysela D, Sylva SP, Sogin ML, Jannasch HW (2002) Microbial diversity of hydrothermal sediments in the Guaymas Basin: evidence for anaerobic methanotrophic communities. Appl Environ Microbiol 68:1994–2007PubMedPubMedCentralCrossRefGoogle Scholar
  86. Thauer RK, Shima S (2008) Methane as fuel for anaerobic microorganisms. Ann N Y Acad Sci 1125:158–170PubMedCrossRefGoogle Scholar
  87. Timmers PHA, Welte CU, Koehorst JJ, Plugge CM, Jetten MSM, Stams AJM (2017) Reverse methanogenesis and respiration in methanotrophic archaea. Archaea 2017:1654237PubMedPubMedCentralCrossRefGoogle Scholar
  88. Trembath-Reichert E, Case DH, Orphan VJ (2016) Characterization of microbial associations with methanotrophic archaea and sulfate-reducing bacteria through statistical comparison of nested Magneto-FISH enrichments. Peer J 4:e1913PubMedCrossRefGoogle Scholar
  89. Treude T, Krüger M, Boetius A, Jørgensen BB (2005) Environmental control on anaerobic oxidation of methane in the gassy sediments of Eckernf05 Bay (German Baltic). Limnol Oceanogr 50:1771–1786CrossRefGoogle Scholar
  90. Treude T, Orphan V, Knittel K, Gieseke A, House CH, Boetius A (2007) Consumption of methane and CO2 by methanotrophic microbial mats from gas seeps of the anoxic Black Sea. Appl Environ Mcrobiol 73:2271–2283CrossRefGoogle Scholar
  91. Valentine DL, Reeburgh WS (2000) New perspectives on anaerobic methane oxidation. Environ Microbiol 2:477–484PubMedCrossRefGoogle Scholar
  92. Valenzuela EI, Prieto-Davó A, López-Lozano NE, Hernández-Eligio A, Vega-Alvarado L, Juárez K, García-González AS, López MG, Cervantes FJ (2017) Anaerobic methane oxidation driven by microbial reduction of natural organic matter in a tropical wetland. Appl Environ Microbiol 83:e00645–e00617PubMedPubMedCentralCrossRefGoogle Scholar
  93. Walker DJF, Ramesh Y, Adhikari RY, Holmes DE, Ward JE, Woodard TL, Nevin KP, Lovley DR (2017) Electrically conductive pili from pilin genes of phylogenetically diverse microorganisms. ISME J. Scholar
  94. Wang FP, Zhang Y, Chen Y, He Y, Qi J, Hinrichs KU, Zhang XX, Xiao X, Boon N (2014) Methanotrophic archaea possessing diverging methane-oxidizing and electron-transporting pathways. ISME J 8:1069–1078PubMedCrossRefGoogle Scholar
  95. Weber HS, Habicht KS, Thamdrup B (2017) Anaerobic methanotrophic archaea of the ANME-2d cluster are active in a low-sulfate, iron-rich freshwater sediment. Front Microbiol 8:619PubMedPubMedCentralGoogle Scholar
  96. Wegener G, Shovitri M, Knittel K, Niemann H, Hovland M, Boetius A (2008a) Biogeochemical processes and microbial diversity of the Gullfaks and Tommeliten methane seeps (Northern North Sea). Biogeosciences 5:1127–1144CrossRefGoogle Scholar
  97. Wegener G, Niemann H, Elvert M, Hinrichs K-U, Boetius A (2008b) Assimilation of methane and inorganic carbon by microbial communities mediating the anaerobic oxidation of methane. Environ Microbiol 10:2287–2298PubMedCrossRefGoogle Scholar
  98. Wegener G, Krukenberg V, Riedel D, Tegetmeyer HE, Boetius A (2015) Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature 526:587–590PubMedCrossRefGoogle Scholar
  99. Wegener G, Krukenberg V, Ruff SE, Kellermann MY, Knittel K (2016) Metabolic capabilities of microorganisms involved in and associated with the anaerobic oxidation of methane. Front Microbiol 7:46PubMedPubMedCentralCrossRefGoogle Scholar
  100. Yoshinaga MY, Lazar CS, Elvert M, Lin Y-S, Zhu C, Heuer VB, Teske A, Hinrichs K-U (2015) Possible roles of uncultured archaea in carbon cycling in methane-seep sediments. Geochem Cosmochem Acta 164:35–52CrossRefGoogle Scholar
  101. Zehnder AJB, Brock TD (1979) Methane formation and methane oxidation by methanogenic bacteria. J Bacteriol 137:420–432PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Max Planck Institute for Marine MicrobiologyBremenGermany
  2. 2.MARUM, Center for Marine Environmental SciencesBremenGermany
  3. 3.Alfred Wegener Institute Helmholtz Center for Polar and Marine ResearchBremerhavenGermany

Personalised recommendations