Advertisement

Microbial Communities in Oil Shales, Biodegraded and Heavy Oil Reservoirs, and Bitumen Deposits

  • Lisa M. GiegEmail author
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)

Abstract

Oil shale (kerogen), light crude oil, heavy crude oil, and bitumen represent a sequence of fossil energy materials that range from “pre-oil” to “ultra-heavy oil” that were formed and/or then transformed over geological time in the Earth’s subsurface. Microorganisms can inhabit all of the deposits harboring these materials and have played a key role in transforming light crude oil to ultra-heavy bitumen. A majority of our understanding about how microbial life exists within and influences these hydrocarbon-associated subsurface environments comes from studying crude oil reservoirs, while comparatively little is known for oil shale or bitumen reservoirs. This chapter summarizes the knowledge to date on the microbial communities and their putative metabolic activities within these distinct petroliferous deposits.

References

  1. Aitken CM, Jones DM, Larter SR (2004) Anaerobic hydrocarbon biodegradation in deep subsurface oil reservoirs. Nature 431:291–294PubMedCrossRefGoogle Scholar
  2. An D, Caffrey SM, Soh J, Agrawal A, Brown D, Budwill K, Dong X, Dunfield PF, Foght J, Gieg LM, Hallam SJ, Hanson NW, He Z, Jack TR, Klassen J, Konwar KM, Kuatsjah E, Li C, Larter S, Leopatra V, Nesbø CL, Oldenburg T, Pagé AP, Ramos-Padron E, Rochman FF, Saidi-Mehrabad A, Sensen CW, Sipahimalani P, Song YC, Wilson S, Wolbring G, Wong ML, Voordouw G (2013) Metagenomics of hydrocarbon resource environments indicates aerobic taxa and genes to be unexpectedly common. Environ Sci Technol 47:10708–10717PubMedPubMedCentralCrossRefGoogle Scholar
  3. An BA, Shen Y, Voordouw G (2017) Control of sulfide production in high salinity Bakken shale oil reservoirs by halophilic bacteria reducing nitrate to nitrite. Front Microbiol 8:1164PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bachmann RT, Johnson AC, Edyvean RJG (2014) Biotechnology in the petroleum industry: an overview. Int Biodeterior Biodegrad 86:225–237CrossRefGoogle Scholar
  5. Bastin ES, Greer FE, Merritt CA, Moulton G (1926) The presence of sulphate-reducing bacteria in oil field waters. Science 63:1865–1883CrossRefGoogle Scholar
  6. Belcher RW, Huynh KV, Hoang TV, Crowley DE (2012) Isolation of biosurfactant-producing bacteria from the Rancho La Brea tar pits. World J Microbiol Biotechnol 28:3261–3267PubMedCrossRefGoogle Scholar
  7. Bennett B, Adams JJ, Gray ND, Sherry A, Oldenburg TBP, Huang H, Larter SR, Head IM (2013) The controls on the composition of biodegraded oils in the deep subsurface – part 3. The impact of microorganism distribution on petroleum geochemical gradients in biodegraded petroleum reservoirs. Org Geochem 56:94–105CrossRefGoogle Scholar
  8. Berdugo-Clavijo C, Gieg LM (2014) Conversion of crude oil to methane by a microbial consortium enriched from oil reservoir production waters. Front Microbiol 5:197PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bian XY, Mbadinga SM, Liu YF, Yang SZ, Liu JF, Ye RQ, Gu JD, Mu BZ (2015) Insights into the anaerobic biodegradation pathway of n-alkanes in oil reservoirs by detection of signature metabolites. Sci Rep 5:9801PubMedPubMedCentralCrossRefGoogle Scholar
  10. Booker AE, Borton MA, Daly RA, Welch SA, Nicora CD, Hoyt DW, Wilson T, Purvine SO, Wolfe RA, Sharma S, Mouser PJ, Cole DR, Lipton MS, Wrighton KC, Wilkins MJ (2017) Sulfide generation by dominant Halanaerobium microorganisms in hydraulically fractured shales. mSphere 2(4). pii: e00257–17Google Scholar
  11. Cluff MA, Hartsock A, MacRae JD, Carter K, Mouser PJ (2014) Temporal changes in microbial ecology and geochemistry in produced water from hydraulically fractured Marcellus shale gas wells. Environ Sci Technol 48:6508–6517PubMedCrossRefGoogle Scholar
  12. Colosimo F, Thomas R, Lloyd JR, Taylor KG, Boothman C, Smith AD, Lord R, Kalin RM (2016) Biogenic methane in shale gas and coal bed methane: a review of current knowledge and gaps. Int J Coal Geol 165:106–120CrossRefGoogle Scholar
  13. Colwell FS, D’Hondt S (2013) Nature and extent of the deep biosphere. Rev Mineral Geochem 75:547–574CrossRefGoogle Scholar
  14. Daly RA, Borton MA, Wilkins MJ, Hoyt DW, Kountz DJ, Wolfe RA, Welch SA, Marcus DN, Trexler RV, MacRae JD, Krzycki JA, Cole DR, Mouser PJ, Wrighton KC (2016) Microbial metabolisms in a 2.5-km-deep ecosystem created by hydraulic fracturing in shales. Nat Microbiol 5:16146CrossRefGoogle Scholar
  15. Dyni JR (2005) Geology and resources of some world oil-shale deposits. Scientific investigations report 2005–5294, Department of the Interior, US Geological SurveyGoogle Scholar
  16. Findley MD, Appleman MD, Yen TF (1974) Degradation of oil shale by sulfur-oxidizing bacteria. Appl Microbiol 28:460–464PubMedPubMedCentralGoogle Scholar
  17. Foght J (2010) Microbial communities in oil shales, biodegraded and heavy oil reservoirs, and bitumen deposits. In: Timmis KN, McGenity TJ (eds) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 2161–2172CrossRefGoogle Scholar
  18. Foght J, Gieg LM, Siddique T (2017) Microbiology of oil sands tailings: past, present, future. FEMS Microbiol Ecol 3(5).  https://doi.org/10.1093/femsec/fix034
  19. Gates ID, Larter SR (2014) Energy efficiency and emissions intensity of SAGD. Fuel 115:706–713CrossRefGoogle Scholar
  20. Gieg LM, Duncan KE, Suflita JM (2008) Bioenergy production via microbial conversion of residual oil to natural gas. Appl Environ Microbiol 74:3022–3029PubMedPubMedCentralCrossRefGoogle Scholar
  21. Gieg LM, Davidova IA, Duncan KE, Suflita JM (2010) Methanogenesis, sulfate reduction and crude oil biodegradation in hot Alaskan oilfields. Environ Microbiol 12:3074–3086PubMedCrossRefGoogle Scholar
  22. Gieg LM, Jack TR, Foght JM (2011) Biological souring and mitigation in oil reservoirs. Appl Microbiol Biotechnol 92:263–282PubMedCrossRefGoogle Scholar
  23. Gieg LM, Fowler SJ, Berdugo-Clavijo C (2014) Syntrophic biodegradation of hydrocarbon contaminants. Curr Opin Biotechnol 27:21–29PubMedCrossRefGoogle Scholar
  24. Grabowski A, Nercessian O, Fayolle F, Blanchet D, Jeanthon C (2005) Microbial diversity in production waters of a low-temperature biodegraded oil reservoir. FEMS Microbiol Ecol 54:427–443PubMedCrossRefGoogle Scholar
  25. Grassia GS, McLean KM, Glénat P, Bauld J, Sheehy AJ (1996) A systematic survey for thermophilic fermentative bacteria and archaea in high temperature petroleum reservoirs. FEMS Microbiol Ecol 21:47–58CrossRefGoogle Scholar
  26. Gray ND, Sherry A, Hubert C, Dolfing J, Head IM (2010) Methanogenic degradation of petroleum hydrocarbons in subsurface environments remediation, heavy oil formation, and energy recovery. Adv Appl Microbiol 72:137–161PubMedCrossRefGoogle Scholar
  27. Gray ND, Sherry A, Grant RJ, Rowan AK, Hubert CR, Callbeck CM, Aitken CM, Jones DM, Adams JJ, Larter SR, Head IM (2011) The quantitative significance of Syntrophaceae and syntrophic partnerships in methanogenic degradation of crude oil alkanes. Environ Microbiol 13:2957–2975PubMedPubMedCentralCrossRefGoogle Scholar
  28. Guo L, Li XM, Bo X, Yang Q, Zeng GM, Liao DX, Liu JJ (2008) Impacts of sterilization, microwave and ultrasonication pretreatment on hydrogen producing using waste sludge. Bioresour Technol 99:3651–3658PubMedCrossRefGoogle Scholar
  29. Head IM, Gray ND (2016) Microbial biotechnology 2020; microbiology of fossil fuel resources. Microb Biotechnol 9:626–634PubMedPubMedCentralCrossRefGoogle Scholar
  30. Head IM, Jones DM, Larter SR (2003) Biological activity in the deep subsurface and the origin of heavy oil. Nature 426:244–352CrossRefGoogle Scholar
  31. Head IM, Larter SR, Gray ND, Sherry A, Adams JJ, Aitken CM et al (2010) Hydrocarbon degradation in petroleum reservoirs. In: Timmis KN, McGenity TJ (eds) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 3097–3109CrossRefGoogle Scholar
  32. Head IM, Gray ND, Larter SR (2014) Life in the slow lane; biogeochemistry of biodegraded petroleum containing reservoirs and implications for energy recovery and carbon management. Front Microbiol 5:566PubMedPubMedCentralCrossRefGoogle Scholar
  33. Hu P, Tom L, Singh A, Thomas BC, Baker BJ, Piceno YM, Andersen GL, Banfield JF (2016) Genome-resolved metagenomic analysis reveals roles for candidate phyla and other microbial community members in biogeochemical transformations in oil reservoirs. mBio 7:e01669–e01615PubMedPubMedCentralGoogle Scholar
  34. Hubert CRJ, Oldenburg TBP, Fustic M, Gray ND, Larter SR, Penn K, Rowan AK, Seshadri R, Sherry A, Swainsbury R, Voordouw G, Voordouw JK, Head IM (2012) Massive dominance of Epsilonproteobacteria in formation waters from a Canadian oil sands reservoir containing severely biodegraded oil. Environ Microbiol 14:387–404PubMedPubMedCentralCrossRefGoogle Scholar
  35. Hunt JM (1996) Petroleum geochemistry and geology, 2nd edn. W.H. Freeman and Company, New YorkGoogle Scholar
  36. Johnson RC, Mercier TJ, Brown ME, Pantea, MP, Self JG (2010) An assessment of in-place oil shale resources in the Green River formation, Piceance Basin. U.S. Geological Survey Digital Data Series DDS–69–Y, Colorado, 187 ppGoogle Scholar
  37. Johnson RJ, Folwell BD, Wirekoh A, Frenzel M, Skovhus TL (2017) Reservoir souring – latest developments for application and mitigation. J Biotechnol 256:57–67PubMedPubMedCentralCrossRefGoogle Scholar
  38. Jones DM, Head IM, Gray ND, Adams JJ, Rowan AK, Aitken CM, Bennett B, Huang H, Brown A, Bowler BF, Oldenburg T, Erdmann M, Larter SR (2008) Crude oil biodegradation via methanogenesis in subsurface petroleum reservoirs. Nature 451:176–180PubMedPubMedCentralCrossRefGoogle Scholar
  39. Kim J-S, Crowley DE (2007) Microbial diversity in natural asphalts of the Rancho La Brea tar pits. Appl Environ Microbiol 73:4579–4591PubMedPubMedCentralCrossRefGoogle Scholar
  40. Kryachko Y, Dong X, Sensen CW, Voordouw G (2012) Compositions of microbial communities associated with oil and water in a mesothermic oil field. Antonie Van Leeuwenhoek 101:493–506PubMedCrossRefGoogle Scholar
  41. L’Haridon S, Reysenbach A-L, Glénat P, Prieur D, Jeanthon C (1995) Hot subterranean biosphere in a continental oil reservoir. Nature 377:223–224CrossRefGoogle Scholar
  42. Larter SR, Head IM (2014) Oil sands and heavy oil: origin and exploitation. Elements 10:277–284CrossRefGoogle Scholar
  43. Larter SR, Wilhelms A, Head I, Koopmans M, Aplin A, Di Primio R, Zwach C, Erdmann M, Telnaes N (2003) The controls on the composition of biodegraded oils in the deep subsurface – part 1: biodegradation rates in petroleum reservoirs. Org Geochem 34:601–613CrossRefGoogle Scholar
  44. Larter S, Huang H, Adams J, Bennett B, Jokanola O, Oldenburg T, Jones M, Head I, Riediger C, Fowler M (2006) The controls on the composition of biodegraded oil in the deep subsurface: part II – geological controls on subsurface biodegradation fluxes and contraints on reservoir-fluid property prediction. AAPG Bull 90:921–938CrossRefGoogle Scholar
  45. Larter S, Huang H, Adams J, Bennett B, Snowdon LR (2012) A practical scale for use in reservoir geochemical studies of biodegraded oils. Org Geochem 45:66–76CrossRefGoogle Scholar
  46. Li C, Fub L, Stafford J, Belosevic GE-DM (2017) The toxicity of oil sands process-affected water (OSPW): a critical review. Sci Total Environ 601–602:1785–1802PubMedCrossRefGoogle Scholar
  47. Liang R, Davidova IA, Marks CR, Stamps BW, Harriman BH, Stevenson BS, Duncan KE, Suflita JM (2016a) Metabolic capability of a predominant Halanaerobium sp. in hydraulically fractured gas well and its implication in pipeline corrosion. Front Microbiol 7:988PubMedPubMedCentralGoogle Scholar
  48. Liang B, Wang LY, Zhou Z, Mbadinga SM, Zhou L, Liu JF, Yang SZ, Gu JD, Mu BZ (2016b) High frequency of Thermodesulfovibrio spp. and Anaerolineaceae in association with Methanoculleus spp. in a long-term incubation of n-alkanes-degrading methanogenic enrichment culture. Front Microbiol 7:1431PubMedPubMedCentralGoogle Scholar
  49. Lipus D, Vikram A, Ross D, Bain D, Gulliver D, Hammack R, Bibby K (2017) Predominance and metabolic potential of Halanaerobium spp. in produced water from hydraulically fractured Marcellus shale wells. Appl Environ Microbiol 83(8). pii: e02659-16Google Scholar
  50. Magot M (2005) Indigenous microbial communities in oil fields. In: Ollivier B, Magot M (eds) Petroleum microbiology. ASM Press, Washington, pp 21–33CrossRefGoogle Scholar
  51. Magot M, Ollivier B, Patel BK (2000) Microbiology of petroleum reservoirs. Antonie Van Leeuwenhoek 77:103–116PubMedPubMedCentralCrossRefGoogle Scholar
  52. Martini AM, Budai JM, Walter LM, Schoell M (1996) Microbial generation of economic accumulations of methane within a shallow organic-rich shale. Nature 383:155–158CrossRefGoogle Scholar
  53. Martini AM, Walter LM, McIntosh JC (2008) Identification of microbial and thermogenic gas components from upper Devonian Antrim black shale cores, Illinois and Michigan basins. Am Assoc Pet Geol Bull 92:327–339Google Scholar
  54. Matlakowska R, Sklodowska A (2011) Biodegradation of Kupferschiefer black shale organic matter (Fore-Sudetic monocline, Poland) by indigenous microorganisms. Chemosphere 83:1255–1261PubMedCrossRefGoogle Scholar
  55. McIntosh JC, Walter LM, Martini AM (2002) Pleistocene recharge to midcontinent basins: effects on salinity structure and microbial gas generation. Geochim Cosmochim Acta 66:1681–1700CrossRefGoogle Scholar
  56. Meckenstock RU, von Netzer F, Stumpp C, Lueders T, Himmelberg AM, Hertkorn N, Schmitt-Kopplin P, Harir M, Hosein R, Haque S, Schulze-Makuch D (2014) Oil biodegradation. Water droplets in oil are microhabitats for microbial life. Science 345:673–676PubMedCrossRefGoogle Scholar
  57. Meslé M, Périot C, Dromart G, Oger PM (2012) Biostimulation to identify microbial communities involved in methane generation in shallow kerogen-rich shales. J Appl Microbiol 114:55–70PubMedCrossRefGoogle Scholar
  58. Meslé M, Dromart G, Haeseler F, Oger PM (2015) Classes of organic molecules targeted by a methanogenic microbial consortium grown on sedimentary rocks of various maturities. Front Microbiol 6:589PubMedPubMedCentralGoogle Scholar
  59. Meyer WC, Yen TF (1976) Enhanced dissolution of oil shale by bioleaching with Thiobacilli. Appl Environ Microbiol 32:610–616PubMedPubMedCentralGoogle Scholar
  60. Mohan AM, Bibby KJ, Lipus D, Hammack RW, Gregory KB (2016) The functional potential of microbial communities in hydraulic fracturing source water and produced water from natural gas extraction characterized by metagenomic sequencing. PLoS One 9:e107682CrossRefGoogle Scholar
  61. Mouser PJ, Borton M, Darrah TH, Hartsock A, Wrighton KC (2016) Hydraulic fracturing offers view of microbial life in the deep terrestrial subsurface. FEMS Microbiol Ecol 92(11). pii:fiw166PubMedCrossRefGoogle Scholar
  62. Orphan VJ, Taylor LT, Hafenbradl D, Delong EF (2000) Culture-dependent and culture-independent characterization of microbial assemblages associated with high-temperature petroleum reservoirs. Appl Environ Microbiol 66:700–711PubMedPubMedCentralCrossRefGoogle Scholar
  63. Peters KE, Moldowan JM (1993) The biomarker guide. Prentice Hall, New YorkGoogle Scholar
  64. Petsch ST, Eglinton TI, Edwards KJ (2001) 14C-dead living biomass: evidence for microbial assimilation of ancient organic carbon during shale weathering. Science 292:1127–1131PubMedCrossRefGoogle Scholar
  65. Petsch ST, Edwards KJ, Eglinton TI (2003) Abundance, distribution and δ13C analysis of microbial phospholipid-derived fatty acids in a black shale weathering profile. Org Geochem 34:731–743CrossRefGoogle Scholar
  66. Pfister RM, Krieger E, Ridge J (1991) Microbial presence and potential in eastern oil shale. Resour Conserv Recycl 5:231–243CrossRefGoogle Scholar
  67. Ridley D, An D, Stancliffe S, Voordouw G (2017) Patchy distribution of methanogenic archaea and hydrocarbon-degrading fungi in northern Alberta oil sands deposits. Abstract, ISMOS-6, San Diego, 6–9 JuneGoogle Scholar
  68. Roadifer RE (1987) Size distributions of the world’s largest known oil and tar accumulations. In: Meyer F (ed) Exploration for heavy crude oil and natural bitumen. AAPG, Tulsa, pp 3–23Google Scholar
  69. Röling WFM, Head IM, Larter SR (2003) The microbiology of hydrocarbon degradation in subsurface petroleum reservoirs: perspectives and prospects. Res Microbiol 154:321–328PubMedCrossRefGoogle Scholar
  70. Schlegel ME, McIntosh JC, Petsch ST, Orem WH, Jones EJP, Martini AM (2013) Extents and limits of biodegradation by in situ methanogenic consortia in shale and formation fluids. Appl Geochem 28:172–184CrossRefGoogle Scholar
  71. Schulze-Makuch D, Haque S, Resendes de Sousa Antonio M, Ali D, Hosein R, Song YC, Yang J, Zaikova E, Beckles DM, Guinan E, Lehto HJ, Hallam SJ (2011) Microbial life in a liquid asphalt desert. Astrobiology 11:241–258PubMedCrossRefGoogle Scholar
  72. Selucky ML, Chu Y, Ruo T, Strausz OP (1977) Chemical composition of Athabasca bitumen. Fuel 56:369–381CrossRefGoogle Scholar
  73. Siegert M, Sitte J, Galushko A, Kruger M (2014) Starting up microbial enhanced oil recovery. Adv Biochem Eng Biotechnol 142:1–94PubMedGoogle Scholar
  74. Sierra-Garcia IN, Dallagnezze BM, Santos VP, Chaves MR, Capilla R, Santos Neto EV, Gray N, Oliveira VM (2017) Microbial diversity in degraded and non-degraded petroleum samples and comparison across oil reservoirs and local and global scales. Extremophiles 21:211–229PubMedCrossRefGoogle Scholar
  75. Skeels K, Whitby CM (2018) Microbial ecology of naphthenic acid (NA) degradation. In: McGenity, TJ (ed) Handbook of hydrocarbon and lipid microbiology, Springer, Berlin, in pressGoogle Scholar
  76. Stasiuk R, Włodarczyk A, Karcz P, Janas M, Skłodowska A, Matlakowska R (2017) Bacterial weathering of fossil organic matter and organic carbon mobilization from subterrestrial Kupfreschiefer black shale: long-term laboratory studies. Environ Microbiol Rep 9:459–466PubMedCrossRefGoogle Scholar
  77. Strausz OP, Mojelsky TW, Lown EM (1992) The molecular structure of asphaltene: an unfolding story. Fuel 71:1355–1363CrossRefGoogle Scholar
  78. Townsend GT, Prince RC, Suflita JM (2003) Anaerobic oxidation of crude oil hydrocarbons by the resident microorganisms of a contaminated anoxic aquifer. Environ Sci Technol 37:5213–5218PubMedCrossRefGoogle Scholar
  79. Vandenbroucke M, Largeau C (2007) Kerogen origin, evolution and structure. Org Geochem 38:719–833CrossRefGoogle Scholar
  80. Varjani SJ, Gnansounou E (2017) Microbial dynamics in petroleum oilfields and their relationship with physiological properties of petroleum oil reservoirs. Bioresour Technol 245:1258–1265. PubMedCrossRefGoogle Scholar
  81. Vigneron A, Alsop EB, Lomans BP, Kyrpides NC, Head IM, Tsesmetzis N (2017) Succession in the petroleum reservoir microbiome through and oil field production life cycle. ISME J 11:2141–2154PubMedPubMedCentralCrossRefGoogle Scholar
  82. Wilhelms A, Larter SR, Head IM, Farrimond P, DiPrimio R, Zwach C (2001) Biodegradation of oil in uplifted basins prevented by deep-burial sterilization. Nature 411:1034–1037PubMedCrossRefGoogle Scholar
  83. Wong ML, An D, Caffrey SM, Soh J, Dong X, Sensen CW, Oldenburg TBP, Larter SR, Voordouw G (2015) Roles of thermophiles and fungi in bitumen degradation in mostly cold oil sands outcrops. Appl Environ Microbiol 81:6825–6838PubMedPubMedCentralCrossRefGoogle Scholar
  84. Wyndham RC, Costerton JW (1981a) Heterotrophic potentials and hydrocarbon biodegradation potentials of sediment microorganisms with the Athabasca oil sands deposit. Appl Environ Microbiol 41:783–790PubMedPubMedCentralGoogle Scholar
  85. Wyndham RC, Costerton JW (1981b) In vitro microbial degradation of bituminous hydrocarbons and in situ colonization of bitumen surfaces within the Athabasca oil sands deposit. Appl Environ Microbiol 41:791–800PubMedPubMedCentralGoogle Scholar
  86. Yergeau E, Lawrence JR, Sanschagrin S, Waiser MJ, Korber DR, Greer CW (2012) Next-generation sequencing of microbial communities in the Athabasca River and its tributaries in relation to oil sands mining activities. Appl Environ Microbiol 78:7626–7637PubMedPubMedCentralCrossRefGoogle Scholar
  87. Zengler K, Richnow HH, Rosselló-Mora R, Michaelis W, Widdel F (1999) Methane formation from long-chain alkanes by anaerobic microorganisms. Nature 6750:266–269CrossRefGoogle Scholar
  88. Zhou S, Huang H, Yuming L (2008) Biodegradation and origin of oil sands in the Western Canadian sedimentary basin. Pet Sci 5:87–94CrossRefGoogle Scholar
  89. Zhou L, Li K-P, Mbadinga SM, Yang S-Z, Gu J-D, Mu B-Z (2012) Analyses of n-alkanes degrading community dynamics of a high-temperature methanogenic consortium enriched from production water of a petroleum reservoir by a combination of molecular techniques. Exotoxicology 21:1680–1691CrossRefGoogle Scholar
  90. ZoBell CE (1946) Action of microorganisms on hydrocarbons. Bacteriol Rev 10:1–49PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Biological SciencesUniversity of CalgaryCalgaryCanada

Personalised recommendations