Advertisement

Microbial Communities in Hydrocarbon-Polluted Harbors and Marinas

  • Balbina NogalesEmail author
  • Rafael Bosch
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)

Abstract

Anthropogenically created habitats have characteristic features that determine the composition and function of microbial communities. Harbors are eutrophicated, variable, and complex environments where pollution is chronic and multifactorial (hydrocarbons, heavy metals, biocides, etc.). These environments sustain highly diverse communities, different in composition from those in surrounding areas. Known hydrocarbon degrading bacteria are in low proportions in these communities. The presence of pollutants (hydrocarbons, heavy metals, or combination of both) is an important factor in shaping the composition of these communities. But we cannot explain the variability of harbor communities without taking into account multiple and various environmental parameters that might be different for each harbor and even more important than the presence of hydrocarbons. Microbial communities in harbor waters and sediments have capabilities for hydrocarbon degradation and respond rapidly to accidental oil spills in bioremediation trials. We are starting to elucidate the complexity of catabolic networks in harbor communities in terms of microbial taxa and degradation pathways involved, but the data are still scarce. The latest studies show clearly that we should move from the simplistic view that hydrocarbon degradation in harbors is done by well-characterized hydrocarbon degraders. The emerging picture is a network of diverse microorganisms and catabolic activities able to cope with the multiple stress factors acting in harbor environments.

References

  1. Acosta-González A, Marqués S (2016) Bacterial diversity in oil-polluted marine coastal sediments. Curr Opin Biotechnol 38:24–32.CrossRefGoogle Scholar
  2. Aguiló-Ferretjans MM, Bosch R, Martín-Cardona C, Lalucat J, Nogales B (2008) Phylogenetic analysis of the composition of bacterial communities in human-exploited coastal environments from Mallorca Island (Spain). Syst Appl Microbiol 31:231–240.CrossRefGoogle Scholar
  3. Barbato M, Mapelli F, Magagnini M, Chouaia B, Armeni M, Marasco R, Crotti E, Daffonchio D, Borin S (2016) Hydrocarbon pollutants shape bacterial community assembly of harbor sediments. Mar Pollut Bull 104:211–220.CrossRefGoogle Scholar
  4. Bargiela R, Mapelli F, Rojo D, Chouaia B, Tornés J, Borin S, Richter M, Del Pozo MV, Cappello S, Gertler C, Genovese M, Denaro R, Martínez-Martínez M, Fodelianakis S, Amer RA, Bigazzi D, Han X, Chen J, Chernikova TN, Golyshina OV, Mahjoubi M, Jaouanil A, Benzha F, Magagnini M, Hussein E, Al-Horani F, Cherif A, Blaghen M, Abdel-Fattah YR, Kalogerakis N, Barbas C, Malkawi HI, Golyshin PN, Yakimov MM, Daffonchio D, Ferrer M (2015a) Bacterial population and biodegradation potential in chronically crude oil-contaminated marine sediments are strongly linked to temperature. Sci Rep 5:11651.Google Scholar
  5. Bargiela R, Herbst F-A, Martínez-Martínez M, Seifert J, Rojo D, Cappello S, Genovese M, Crisafi F, Denaro R, Chernikova TN, Barbas C, von Bergen M, Yakimov MM, Ferrer M, Golyshin PN (2015b) Metaproteomics and metabolomics analyses of chronically petroleum-polluted sites reveal the importance of general anaerobic processes uncoupled with degradation. Proteomics 15:3508–3520.CrossRefGoogle Scholar
  6. Bargiela R, Gertler C, Magagnini M, Mapelli F, Chen J, Daffonchio D, Golyshin PN, Ferrer M (2015c) Degradation network reconstruction in uric acid and ammonium amendments in oil-degrading marine microcosms guided by metagenome data. Front Microbiol 6:article 1270.CrossRefGoogle Scholar
  7. Bellagamba M, Viggi CC, Ademollo N, Rossetti S, Aulenta F (2017) Electrolysis-driven bioremediation of crude oil-contaminated marine sediments. New Biotechnol 38:84–90.CrossRefGoogle Scholar
  8. Birch GF (2017) Assessment of human-induced change and biological risk posed by contaminants in estuarine/harbour sediments: Sydney Harbour/estuary (Australia). Mar Pollut Bull 116:234–248. CrossRefGoogle Scholar
  9. Cappato A, Canevello S, Baggiani B (2011) Cruises and recreational boating in the Mediterranean. Plan Bleu, ValboneGoogle Scholar
  10. Cappello S, Caruso G, Zampino D, Monticelli LS, Maimone G, Denaro R, Tripodo B, Troussellier M, Yakimov M, Giuliano L (2007a) Microbial community dynamics during assays of harbour oil spill bioremediation: a microscale simulation study. J Appl Microbiol 102:184–194CrossRefGoogle Scholar
  11. Cappello S, Denaro R, Genovese M, Giuliano L, Yakimov MM (2007b) Predominant growth of Alcanivorax during experiments on “oil spill bioremediation” in mesocosms. Microbiol Res 162:185–190CrossRefGoogle Scholar
  12. Cappello S, Genovese M, Della Torre C, Crisari A, Hassanshahian M, Santisi S, Calogero R, Yakimov MM (2012) Effect of bioemulsificant exopolysaccharide (EPS2003) on microbial community dynamics during assays of oil spill bioremediation: a microcosm study. Mar Pollut Bull 64:2820–2828CrossRefGoogle Scholar
  13. Cappello S, Calogero R, Santisi S, Genovese M, Denaro R, Genovese L, Giuliano L, Mancini G, Yakimov MM (2015) Bioremediation of oil polluted marine sediments: a bio-engineering treatment. Int Microbiol 18:127–134PubMedGoogle Scholar
  14. Caruso G, La Ferla R, Azzaro M, Zoppini A, Marino G, Petochi T, Corinaldesi C, Leonardi M, Zaccone R, Umani SF, Caroppo C, Monticelli L, Azzaro F, Decembrini F, Maimone G, Cavallo RA, Stabili L, Todorova NH, Karamfilov VK, Rastelli E, Cappello S, Acquaviva MI, Narracci M, De Angelis R, Del Negro P, Latini M, Danovaro R (2016) Microbial assemblages for environmental quality assessment: knowledge, gaps and usefulness in the European Marine Strategy Framework Directive. Crit Rev Microbiol 42:883–904CrossRefGoogle Scholar
  15. Chan JTK, Leung HM, Yue PYK, Au CK, Wong YK, Cheung KC, Li WC, Yung KKL (2017) Combined effects of land reclamation, channel dredging upon the bioavailable concentration of polycyclic aromatic hydrocarbons (PAHs) in Victoria Harbour sediment, Hong Kong. Mar Pollut Bull 114:587–591CrossRefGoogle Scholar
  16. Chiellini C, Iannelli R, Verni F, Petroni G (2013) Bacterial communities in polluted seabed sediments: a molecular biology assay in Leghorn harbor. Sci World J 2013:article ID 165706CrossRefGoogle Scholar
  17. Coates JD, Woodward J, Allen J, Philp P, Lovley DR (1997) Anaerobic degradation of polycyclic aromatic hydrocarbons and alkanes in petroleum-contaminated marine harbor sediments. Appl Environ Microbiol 63:3589–3593PubMedPubMedCentralGoogle Scholar
  18. Cutroneo L, Carbone C, Consani S, Vagge G, Canepa G, Capello M (2017) Environmental complexity of a port: evidence from circulation of the water masses, and composition and contamination of bottom sediments. Mar Pollut Bull 119:184–194CrossRefGoogle Scholar
  19. Dell’Anno A, Beolchini F, Gabellini M, Rocchetti L, Pusceddu A, Danovaro R (2009) Bioremediation of petroleum hydrocarbons in anoxic marine sediments: consequences on the speciation of heavy metals. Mar Pollut Bull 58:1808–1814CrossRefGoogle Scholar
  20. Dell’Anno A, Beolchini F, Rocchetti L, Luna GM, Danovaro R (2012) High bacterial biodiversity increases degradation performance of hydrocarbons during bioremediation of contaminated harbor sediments. Environ Pollut 167:85–92CrossRefGoogle Scholar
  21. Denaro R, D’Auria G, Di Marco G, Genovese M, Troussellier M, Yakimov MM, Giuliano L (2005) Assessing terminal restriction fragment length polymorphism suitability for the description of bacterial community structure and dynamics in hydrocarbon-polluted marine environments. Environ Microbiol 7:78–87CrossRefGoogle Scholar
  22. Duran R, Bielen A, Paradžik T, Gassie C, Pustijanac E, Cagnon C, Hamer B, Vujaklija D (2015) Exploring Actinobacteria assemblages in coastal marine sediments under contrasted human influences in the West Istria Sea, Croatia. Environ Sci Pollut Res 22:15215–15229CrossRefGoogle Scholar
  23. ECORYS (2013) Study in support of policy measures for maritime and coastal tourism at EU level. ECORYS Nederland BV. RotterdamGoogle Scholar
  24. Genovese M, Crisafi F, Denaro R, Cappello S, Russo D, Calogero R, Santisi S, Catalfamo M, Modica A, Smedile F, Genovese L, Golyshin PN, Giuliano L, Yakimov MM (2014) Effective bioremediation strategy for rapid in situ cleanup of anoxic marine sediments in mesocosms oil spill simulation. Front Microbiol 5:article 162CrossRefGoogle Scholar
  25. Gertler C, Bargiela R, Mapelli F, Han X, Chen J, Hai T, Amer RA, Mahjoubi M, Malkawi H, Magagnini M, Cherif A, Abdel-Fattah YR, Kalogerakis N, Daffonchio D, Ferrer M, Golyshin P (2015) Conversion of uric acid into ammonium in oil-degrading marine microbial communities: a possible role of halomonads. Microb Ecol 70:724–740CrossRefGoogle Scholar
  26. Gomes NCM, Manco SC, Pires ACC, Gonçalves SF, Calado R, Cleary DFR, Loureiro S (2013) Richness and composition of sediment bacterial assemblages in an Atlantic port environment. Sci Total Environ 452–453:172–180CrossRefGoogle Scholar
  27. Gómez AG, Bárcena JF, Juanes JA, Ondiviela B, Sámano ML (2014) Transport time scales as physical descriptors to characterize heavily modified water bodies near ports in coastal zones. J Environ Manag 136:76–84CrossRefGoogle Scholar
  28. Gómez AG, Ondiviela B, Puente A, Juanes JA (2015) Environmental risk assessment of water quality in harbor areas: a new methodology applied to European ports. J Environ Manag 155:77–88CrossRefGoogle Scholar
  29. Grifoll M, Jordà G, Espino M (2014) Surface water renewal and mixing mechanisms in a semi-enclosed microtidal domain. The Barcelona harbour case. J Sea Res 90:54–63CrossRefGoogle Scholar
  30. Gutierrez T (2017) Marine, aerobic hydrocarbon-degrading Gammaproteobacteria: overview. In: McGenity TJ (ed) Taxonomy, genomics and ecophysiology of hydrocarbon-degrading microbes: handbook of hydrocarbon and lipid microbiology, 2nd edn. Springer, Cham.  https://doi.org/10.1007/978-3-319-60053-6_22-1CrossRefGoogle Scholar
  31. Hayes LA, Lovley DR (2002) Specific 16S rDNA sequences associated with naphthalene degradation under sulfate-reducing conditions in harbor sediments. Microb Ecol 43:134–145CrossRefGoogle Scholar
  32. Hayes LA, Nevin KP, Lovley DR (1999) Role of prior exposure on anaerobic degradation of naphthalene and phenanthrene in marine harbor sediments. Org Geochem 30:937–945CrossRefGoogle Scholar
  33. International Maritime Organisation (2003) MARPOL – how to do it. Manual on the practical implications of ratifying, implementing and enforcing MARPOL 73/78, 2002 edition. International Maritime Organization, LondonGoogle Scholar
  34. International Maritime Organisation (2014) Consolidated guidance for port reception facility providers and users. MEPC.1/Circ.834. International Maritime Organization. LondonGoogle Scholar
  35. Jeanbille M, Gury J, Duran R, Tronczynski J, Agogué H, Saïd OB, Ghiglione J-F, Auguet J-C (2016) Response of core microbial consortia to chronic hydrocarbon contaminations in coastal sediment habitats. Front Microbiol 7:article 1637PubMedGoogle Scholar
  36. Johnston EL, Roberts DA (2009) Contaminants reduce the richness and eveness of marine communities: a review and meta-analysis. Environ Pollut 157:1745–1752CrossRefGoogle Scholar
  37. Kalogerakis N, Arff J, Banat IM, Broch OJ, Daffonchio D, Edvardsen T, Eguiraun H, Giuliano L, Handå A, López-de-Ipiña K, Marigomez I, Martinez I, Øie G, Rojo F, Skjermo J, Zanaroli G, Fava F (2015) The role of environmental biotechnology in exploring, exploiting, monitoring, preserving, protecting and decontaminating the marine environment. New Biotechnol 32:157–167CrossRefGoogle Scholar
  38. Kan J, Wang K, Chen F (2006) Temporal variation and detection limit of an estuarine bacterioplankton community analyzed by denaturing gradient gel electrophoresis (DGGE). Aquat Microb Ecol 42:7–18CrossRefGoogle Scholar
  39. King AJ, Readman JW, Zhou JL (2004) Dynamic behaviour of polycyclic aromatic hydrocarbons in Brighton Marina, UK. Mar Pollut Bull 48:229–239CrossRefGoogle Scholar
  40. Kisand V, Valente A, Lahm A, Tanet G, Lettieri T (2012) Phylogenetic and functional metagenomic profiling for assessing microbial biodiversity in environmental monitoring. PLoS One 7:e43630CrossRefGoogle Scholar
  41. Misson B, Garnier C, Lauga B, Dang DH, Ghiglione J-F, Mullot J-U, Duran R, Pringault O (2016) Chemical multi-contamination drives benthic prokaryotic diversity in the anthropized Toulon Bay. Sci Total Environ 556:319–329CrossRefGoogle Scholar
  42. Neira C, Cossaboon J, Mendoza G, Hoh E, Levin LA (2017) Occurrence and distribution of polycyclic aromatic hydrocarbons in surface sediments of San Diego Bay marinas. Mar Pollut Bull 114:466–479CrossRefGoogle Scholar
  43. Ng C, Le T-H, Goh SG, Liang L, Kim Y, Rose JB, Yew-Hoong KG (2015) A comparison of microbial water quality and diversity for ballast and tropical harbor waters. PLoS One 10:e0143123CrossRefGoogle Scholar
  44. Nogales B, Aguiló-Ferretjans MM, Martín-Cardona C, Lalucat J, Bosch R (2007) Bacterial diversity, composition and dynamics in and around recreational coastal areas. Environ Microbiol 9:1913–1929CrossRefGoogle Scholar
  45. Pérez S, Dachs J, Barceló D (2003) Sea breeze modulated volatilization of polycyclic aromatic hydrocarbons from the Masnou Harbor (NW Mediterranean Sea). Environ Sci Technol 37:3794–3802CrossRefGoogle Scholar
  46. Pinheiro PPO, Massone CG, Carreira RS (2017) Distribution, sources and toxicity potential of hydrocarbons in harbor sediments: a regional assessment in SE Brazil. Mar Pollut Bull 120:6–17CrossRefGoogle Scholar
  47. Rocchetti L, Beolchini F, Hallberg KB, Johnson DB, Dell’Anno A (2012) Effects of prokaryotic diversity changes on hydrocarbon degradation rates and metal partitioning during bioremediation of contaminated anoxic marine sediments. Mar Pollut Bull 64:1688–1698CrossRefGoogle Scholar
  48. Rothermich MM, Hayes LA, Lovey DR (2002) Anaerobic, sulfate-dependent degradation of polycyclic aromatic hydrocarbons in petroleum-contaminated harbor sediment. Environ Sci Technol 36:4811–4817CrossRefGoogle Scholar
  49. Sauret C, Tedetti M, Guigue C, Dumas C, Lami R, Pujo-Pay M, Conan P, Goutx M, Ghiglione J-F (2016) Influence of PHAs among other coastal environmental variables on total and PAH-degrading bacterial communities. Environ Sci Pollut Res 23:4242–4256CrossRefGoogle Scholar
  50. Schauer M, Massana R, Pedrós-Alió C (2000) Spatial differences in bacterioplankton composition along the Catalan coast (NW Mediterranean) assessed by molecular fingerprinting. FEMS Microb Ecol 33:51–59CrossRefGoogle Scholar
  51. Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, Arrieta JM, Herndl G (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci U S A 103:12115–12120CrossRefGoogle Scholar
  52. Tavares TCL, Normando LRO, de Vasconcelos ATR, Gerber AL, Agnez-Lima LF, Melo VMM (2016) Metagenomic analysis of sediments under seaports influence in the Equatorial Atlantic Ocean. Sci Total Environ 557–558:888–900CrossRefGoogle Scholar
  53. UNCTAD, United Nations Conference of Trade and Development (2016) Review of maritime transport. United Nations, GenevaGoogle Scholar
  54. Viggi CC, Presta E, Bellagamba M, Kaciulis S, Balijepalli SK, Zanaroli G, Papini MP, Rossetti S, Aulenta F (2015) The “oil spill snorkel”: an innovative bioelectrochemical approach to accelerate hydrocarbons biodegradation in marine sediments. Front Microbiol 6:article 881Google Scholar
  55. Wu X, Monchy S, Taghavi S, Zhu W, Ramos J, van der Lelie D (2011) Comparative genomics and functional analysis of niche-specific adaptation in Pseudomonas putida. FEMS Microbiol Rev 35:299–323CrossRefGoogle Scholar
  56. Yakimov MM, Denaro R, Genovese M, Cappello S, D’Auria G, Chernikova TN, Timmis KN, Golyshin PN, Giuliano L (2005) Natural microbial diversity in superficial sediments of Milazzo Harbor (Sicily) and community successions during microcosm enrichment with various hydrocarbons. Environ Microbiol 7:1426–1441CrossRefGoogle Scholar
  57. Zhang R, Liu B, Lau SCK, Ki J-S, Qian P-Y (2007) Particle-attached and free-living bacterial communities in a contrasting marine environment: Victoria Harbor, Hong Kong. FEMS Microbiol Ecol 61:496–508CrossRefGoogle Scholar
  58. Zhang W, Ki J-S, Qian P-Y (2008) Microbial diversity in polluted harbor sediments I: bacterial community assessment based on four clone libraries of 16S rDNA. Estuar Coast Shelf Sci 76:668–681CrossRefGoogle Scholar
  59. Zhang R, Lau SCK, Ki J-S, Thiyagarajan V, Qian P-Y (2009) Response of bacterioplankton community structures to hydrological conditions and anthropogenic pollution in contrasting subtropical environments. FEMS Microbiol Ecol 69:449–460CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Departamento de BiologíaUniversidad de las Illes BalearsPalmaSpain
  2. 2.Instituto Mediterráneo de Estudios Avanzados (IMEDEA, UIB-CSIC)EsporlesSpain

Personalised recommendations