Advertisement

Microbial Ecology of Marine Environments Chronically Polluted by Petroleum

  • Cristiana Cravo-Laureau
  • Robert DuranEmail author
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)

Abstract

The marine environment receives continuous input of petroleum hydrocarbons from natural and anthropogenic sources leading to chronically polluted sites. Several studies have demonstrated the adaptation mechanisms of microorganisms to tolerate and/or degrade petroleum hydrocarbons, resulting in altered microbial community composition. This chapter presents information about the microbial assemblages in marine environments chronically contaminated with petroleum and the physical-chemical factors driving their organization. Microbial sentinels are proposed from microbial community studies, drawing on global patterns, as potential indicators of the recovery of the contaminated ecosystems.

Notes

Acknowledgments

We thank the support of the French National Research Agency (ANR) for their support through the DECAPAGE (ANR 2011 CESA 006 01) project. We would like to thank all partners of the DECAPAGE project and MELODY group for their useful discussions.

References

  1. Alonso-Gutierrez J, Figueras A, Albaiges J, Jimenez N, Vinas M, Solanas AM, Novoa B (2009) Bacterial communities from shoreline environments (costa da Morte, northwestern Spain) affected by the prestige oil spill. Appl Environ Microbiol 75:3407–3418.  https://doi.org/10.1128/aem.01776-08CrossRefPubMedPubMedCentralGoogle Scholar
  2. Amend AS, Seifert KA, Samson R, Bruns TD (2010) Indoor fungal composition is geographically patterned and more diverse in temperate zones than in the tropics. Proc Natl Acad Sci U S A 107:13748–13753.  https://doi.org/10.1073/pnas.1000454107CrossRefPubMedPubMedCentralGoogle Scholar
  3. Amend AS, Oliver TA, Amaral-Zettler LA, Boetius A, Fuhrman JA, Horner-Devine MC, Huse SM, Welch DBM, Martiny AC, Ramette A, Zinger L, Sogin ML, JBH M (2013) Macroecological patterns of marine bacteria on a global scale. J Biogeogr 40:800–811.  https://doi.org/10.1111/jbi.12034CrossRefGoogle Scholar
  4. Bargiela R, Mapelli F, Rojo D, Chouaia B, Tornés J, Borin S, Richter M, Del Pozo MV, Cappello S, Gertler C, Genovese M, Denaro R, Martínez-Martínez M, Fodelianakis S, Amer RA, Bigazzi D, Han X, Chen J, Chernikova TN, Golyshina OV, Mahjoubi M, Jaouanil A, Benzha F, Magagnini M, Hussein E, Al-Horani F, Cherif A, Blaghen M, Abdel-Fattah YR, Kalogerakis N, Barbas C, Malkawi HI, Golyshin PN, Yakimov MM, Daffonchio D, Ferrer M (2015) Bacterial population and biodegradation potential in chronically crude oil-contaminated marine sediments are strongly linked to temperature. Sci Rep 5:11651.  https://doi.org/10.1038/srep11651CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bartha R (1986) Biotechnology of petroleum pollutant biodegradation. Microb Ecol 12:155–172.  https://doi.org/10.1007/bf02153231CrossRefPubMedGoogle Scholar
  6. Baruah R, Kalita DJ, Saikia BK, Gautam A, Singh AK, Deka Boruah HP (2016) Native hydrocarbonoclastic bacteria and hydrocarbon mineralization processes. Int Biodeterior Biodegrad 112:18–30.  https://doi.org/10.1016/j.ibiod.2016.04.032CrossRefGoogle Scholar
  7. Ben Said O, Goñi-Urriza MS, El Bour M, Dellali M, Aissa P, Duran R (2008) Characterization of aerobic polycyclic aromatic hydrocarbon-degrading bacteria from Bizerte lagoon sediments. Tunis J Appl Microbiol 104:987–997.  https://doi.org/10.1111/j.1365-2672.2007.03621.xCrossRefGoogle Scholar
  8. Ben Said O, Goñi-Urriza M, Bour ME, Aissa P, Duran R (2010) Bacterial community structure of sediments of the bizerte lagoon (Tunisia), a southern mediterranean coastal anthropized lagoon. Microb Ecol 59:445–456.  https://doi.org/10.1007/s00248-009-9585-xCrossRefPubMedGoogle Scholar
  9. Ben Said O, Louati H, Soltani A, Preud’homme H, Cravo-Laureau C, Got P, Pringault O, Aissa P, Duran R (2015) Changes of benthic bacteria and meiofauna assemblages during bio-treatments of anthracene-contaminated sediments from Bizerta lagoon (Tunisia). Environ Sci Pollut Res 22:15319–15331.  https://doi.org/10.1007/s11356-015-4105-7CrossRefGoogle Scholar
  10. Bergmann C (1847) Uber die Verhaltnisse der Warmeokonomie der Thiere zu ihrer Grosse [About the relationship of the thermal economy of animals to their body size.] GottingerStudien 3:538–545Google Scholar
  11. Bordenave S, Goñi-Urriza MS, Caumette P, Duran R (2007) Effects of heavy fuel oil on the bacterial community structure of a pristine microbial mat. Appl Environ Microbiol 73:6089–6097.  https://doi.org/10.1128/AEM.01352-07CrossRefPubMedPubMedCentralGoogle Scholar
  12. de Carvalho CCCR, Costa SS, Fernandes P, Couto I, Viveiros M (2014) Membrane transport systems and the biodegradation potential and pathogenicity of genus Rhodococcus. Front Physiol 5:133.  https://doi.org/10.3389/fphys.2014.00133CrossRefPubMedPubMedCentralGoogle Scholar
  13. Catania V, Santisi S, Signa G, Vizzini S, Mazzola A, Cappello S, Yakimov MM, Quatrini P (2015) Intrinsic bioremediation potential of a chronically polluted marine coastal area. Mar Pollut Bull 99:138–149.  https://doi.org/10.1016/j.marpolbul.2015.07.042CrossRefPubMedGoogle Scholar
  14. Cerniglia C (1992) Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3:351–368.  https://doi.org/10.1007/BF00129093CrossRefGoogle Scholar
  15. Cravo-Laureau C, Duran R (2014) Marine coastal sediments microbial hydrocarbon degradation processes: contribution of experimental ecology in the omics’ era. Front Microbiol 5:39.  https://doi.org/10.3389/fmicb.2014.00039CrossRefPubMedPubMedCentralGoogle Scholar
  16. Duran R (2010) Marinobacter. In: Timmis K, de Lorenzo V, Van der Meer J-R, TJ MG (eds) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 1725–1735CrossRefGoogle Scholar
  17. Duran R, Cravo-Laureau C (2016) Role of environmental factors and microorganisms in determining the fate of polycyclic aromatic hydrocarbons in the marine environment. FEMS Microbiol Rev 40:814–830.  https://doi.org/10.1093/femsre/fuw031CrossRefPubMedPubMedCentralGoogle Scholar
  18. Duran R, Bielen A, Paradžik T, Gassie C, Pustijanac E, Cagnon C, Hamer B, Vujaklija D (2015a) Exploring Actinobacteria assemblages in coastal marine sediments under contrasted human influences in the west Istria Sea, Croatia. Environ Sci Pollut Res 22:15215–15229.  https://doi.org/10.1007/s11356-015-4240-1CrossRefGoogle Scholar
  19. Duran R, Bonin P, Jezequel R, Dubosc K, Gassie C, Terrisse F, Abella J, Cagnon C, Militon C, Michotey V, Gilbert F, Cuny P, Cravo-Laureau C (2015b) Effect of physical sediments reworking on hydrocarbon degradation and bacterial community structure in marine coastal sediments. Environ Sci Pollut Res 22:15248–15259.  https://doi.org/10.1007/s11356-015-4373-2CrossRefGoogle Scholar
  20. Duran R, Cuny P, Bonin P, Cravo-Laureau C (2015c) Microbial ecology of hydrocarbon-polluted coastal sediments. Environ Sci Pollut Res 22:15195–15199.  https://doi.org/10.1007/s11356-015-5373-yCrossRefGoogle Scholar
  21. Frapiccini E, Marini M (2015) Polycyclic aromatic hydrocarbon degradation and sorption parameters in coastal and open-sea sediment. Water Air Soil Pollut 226:246.  https://doi.org/10.1007/s11270-015-2510-7CrossRefGoogle Scholar
  22. Fuhrman JA (2009) Microbial community structure and its functional implications. Nature 459:193–199CrossRefGoogle Scholar
  23. Fuhrman JA, Hewson I, Schwalbach MS, Steele JA, Brown MV, Naeem S (2006) Annually reoccurring bacterial communities are predictable from ocean conditions. Nat Acad Sci U S A 103:13104–13109.  https://doi.org/10.1073/pnas.0602399103CrossRefGoogle Scholar
  24. Fuhrman JA, Cram JA, Needham DM (2015) Marine microbial community dynamics and their ecological interpretation. Nat Rev Microbiol 13:133–146.  https://doi.org/10.1038/nrmicro3417CrossRefPubMedGoogle Scholar
  25. Gilbert JA, Steele JA, Caporaso JG, Steinbrueck L, Reeder J, Temperton B, Huse S, McHardy AC, Knight R, Joint I, Somerfield P, Fuhrman JA, Field D (2012) Defining seasonal marine microbial community dynamics. ISME J 6:298–308.  https://doi.org/10.1038/ismej.2011.107CrossRefPubMedGoogle Scholar
  26. Goréguès C, Michotey V, Bonin P (2004) Isolation of hydrocarbonoclastic denitrifying bacteria from Berre microbial mats. Ophelia 58:263–270CrossRefGoogle Scholar
  27. Green J, Bohannan BJM (2006) Spatial scaling of microbial biodiversity. Trends Ecol Evol 21:501–507.  https://doi.org/10.1016/j.tree.2006.06.012CrossRefPubMedGoogle Scholar
  28. Guermouche M’rassi A, Bensalah F, Gury J, Duran R (2015) Isolation and characterization of different bacterial strains for bioremediation of n-alkanes and polycyclic aromatic hydrocarbons. Environ Sci Pollut Res 22:15332–15346.  https://doi.org/10.1007/s11356-015-4343-8CrossRefGoogle Scholar
  29. Guibert LM, Loviso CL, Borglin S, Jansson JK, Dionisi HM, Lozada M (2016) Diverse bacterial groups contribute to the alkane degradation potential of chronically polluted subantarctic coastal sediments. Microb Ecol 71:100–112.  https://doi.org/10.1007/s00248-015-0698-0CrossRefPubMedGoogle Scholar
  30. Hakil F, Amin-Ali O, Hirschler-Réa A, Mollex D, Grossi V, Duran R, Matheron R, Cravo-Laureau C (2014) Desulfatiferula berrensis sp. nov., a n-alkene-degrading sulfate-reducing bacterium isolated from estuarine sediments international. J Syst Evol Microbiol 64:540–544.  https://doi.org/10.1099/ijs.0.057174-0CrossRefGoogle Scholar
  31. Head IM, Jones DM, Roling WFM (2006) Marine microorganisms make a meal of oil. Nat Rev Microbiol 4:173–182CrossRefGoogle Scholar
  32. Hernandez-Raquet G, Budzinski H, Caumette P, Dabert P, Le Ménach K, Muyzer G, Duran R (2006) Molecular diversity studies of bacterial communities of oil polluted microbial mats from the Etang de Berre (France). FEMS Microbiol Ecol 58:550–562.  https://doi.org/10.1111/j.1574-6941.2006.00187.xCrossRefPubMedGoogle Scholar
  33. Jeanbille M, Gury J, Duran R, Tronczynski J, Agogué H, Saïd OB, Ghiglione JF, Auguet JC (2016a) Response of core microbial consortia to chronic hydrocarbon contaminations in coastal sediment habitats. Front Microbiol 7:1637.  https://doi.org/10.3389/fmicb.2016.01637CrossRefPubMedPubMedCentralGoogle Scholar
  34. Jeanbille M, Gury J, Duran R, Tronczynski J, Ghiglione JF, Agogué H, Saïd OB, Taïb N, Debroas D, Garnier C, Auguet JC (2016b) Chronic polyaromatic hydrocarbon (PAH) contamination is a marginal driver for community diversity and prokaryotic predicted functioning in coastal sediments. Front Microbiol 7:1303.  https://doi.org/10.3389/fmicb.2016.01303CrossRefPubMedPubMedCentralGoogle Scholar
  35. Joye SB, Kleindienst S, Gilbert JA, Handley KM, Weisenhorn P, Overholt WA, Kostka JE (2016) Responses of microbial communities to hydrocarbon exposures. Oceanography 29:136–149.  https://doi.org/10.5670/oceanog.2016.78CrossRefGoogle Scholar
  36. Judd A, Hovland M (2007) Seabed fluid flow: the impact on geology, biology and the marine environment. Cambridge: Cambridge University Press, UKGoogle Scholar
  37. Kasai Y, Kishira H, Syutsubo K, Harayama S (2001) Molecular detection of marine bacterial populations on beaches contaminated by the Nakhodka tanker oil-spill accident. Environ Microbiol 3:246–255CrossRefGoogle Scholar
  38. Kimes NE, Callaghan AV, Suflita JM, Morris PJ (2014) Microbial transformation of the Deepwater horizon oil spill – past, present, and future perspectives. Front Microbiol 5:603.  https://doi.org/10.3389/fmicb.2014.00603CrossRefPubMedPubMedCentralGoogle Scholar
  39. Korlević M, Zucko J, Dragić MN, Blažina M, Pustijanac E, Zeljko TV, Gacesa R, Baranasic D, Starcevic A, Diminic J, Long PF, Cullum J, Hranueli D, Orlić S (2015) Bacterial diversity of polluted surface sediments in the northern Adriatic Sea. Syst Appl Microbiol 38:189–197.  https://doi.org/10.1016/j.syapm.2015.03.001CrossRefPubMedGoogle Scholar
  40. Kostka JE, Prakash O, Overholt WA, Green SJ, Freyer G, Canion A, Delgardio J, Norton N, Hazen TC, Huettel M (2011) Hydrocarbon-degrading bacteria and the bacterial community response in Gulf of Mexico beach sands impacted by the deepwater horizon oil spill. Appl Environ Microbiol 77:7962–7974.  https://doi.org/10.1128/AEM.05402-11CrossRefPubMedPubMedCentralGoogle Scholar
  41. Ladau J, Sharpton TJ, Finucane MM, Jospin G, Kembel SW, O'Dwyer J, Koeppel AF, Green JL, Pollard KS (2013) Global marine bacterial diversity peaks at high latitudes in winter. ISME J 7:1669–1677.  https://doi.org/10.1038/ismej.2013.37CrossRefPubMedPubMedCentralGoogle Scholar
  42. LaMontagne MG, Leifer I, Bergmann S, Van De Werfhorst LC, Holden PA (2004) Bacterial diversity in marine hydrocarbon seep sediments. Environ Microbiol 6:799–808.  https://doi.org/10.1111/j.1462-2920.2004.00613.xCrossRefPubMedGoogle Scholar
  43. Lanzén A, Lekang K, Jonassen I, Thompson EM, Troedsson C (2016) High-throughput metabarcoding of eukaryotic diversity for environmental monitoring of offshore oil-drilling activities. Mol Ecol 25:4392–4406.  https://doi.org/10.1111/mec.13761CrossRefPubMedGoogle Scholar
  44. Louati H, Ben Said O, Soltani A, Got P, Mahmoudi E, Cravo-Laureau C, Duran R, Aissa P, Pringault O (2013) The roles of biological interactions and pollutant contamination in shaping microbial benthic community structure. Chemosphere 93:2535–2546.  https://doi.org/10.1016/j.chemosphere.2013.09.069CrossRefPubMedGoogle Scholar
  45. Loviso CL, Lozada M, Guibert LM, Musumeci MA, Sarango Cardenas S, Kuin RV, Marcos MS, Dionisi HM (2015) Metagenomics reveals the high polycyclic aromatic hydrocarbon-degradation potential of abundant uncultured bacteria from chronically polluted subantarctic and temperate coastal marine environments. J Appl Microbiol 119:411–424.  https://doi.org/10.1111/jam.12843CrossRefPubMedGoogle Scholar
  46. Lozada M, Marcos MS, Commendatore MG, Gil MN, Dionisi HM (2014) The bacterial community structure of hydrocarbon-polluted marine environments as the basis for the definition of an ecological index of hydrocarbon exposure. Microbes Environ 29:269–276.  https://doi.org/10.1264/jsme2.ME14028CrossRefPubMedPubMedCentralGoogle Scholar
  47. Lu X-Y, Zhang T, Fang H-P (2011) Bacteria-mediated PAH degradation in soil and sediment. Appl Microbiol Biotechnol 89:1357–1371.  https://doi.org/10.1007/s00253-010-3072-7CrossRefPubMedGoogle Scholar
  48. Marín-Spiotta E, Gruley KE, Crawford J, Atkinson EE, Miesel JR, Greene S, Cardona-Correa C, Spencer RGM (2014) Paradigm shifts in soil organic matter research affect interpretations of aquatic carbon cycling: transcending disciplinary and ecosystem boundaries. Biogeochemistry 117:279–297.  https://doi.org/10.1007/s10533-013-9949-7CrossRefGoogle Scholar
  49. Martiny JBH, Bohannan BJM, Brown JH, Colwell RK, Fuhrman JA, Green JL, Horner-Devine MC, Kane M, Krumins JA, Kuske CR, Morin PJ, Naeem S, Øvreås L, Reysenbach AL, Smith VH, Staley JT (2006) Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol 4:102–112CrossRefGoogle Scholar
  50. McGenity TJ (2014) Hydrocarbon biodegradation in intertidal wetland sediments. Curr Opin Biotechnol 27:46–54.  https://doi.org/10.1016/j.copbio.2013.10.010CrossRefPubMedGoogle Scholar
  51. McGenity TJ, Folwell BD, McKew BA, Sanni GO (2012) Marine crude-oil biodegradation: a central role for interspecies interactions. Aquat Biosyst 8:10.  https://doi.org/10.1186/2046-9063-8-10CrossRefPubMedPubMedCentralGoogle Scholar
  52. Messina E, Denaro R, Crisafi F, Smedile F, Cappello S, Genovese M, Genovese L, Giuliano L, Russo D, Ferrer M, Golyshin P, Yakimov MM (2016) Genome sequence of obligate marine polycyclic aromatic hydrocarbons-degrading bacterium Cycloclasticus sp. 78-ME, isolated from petroleum deposits of the sunken tanker Amoco Milford haven, Mediterranean Sea. Mar Genomics 25:11–13.  https://doi.org/10.1016/j.margen.2015.10.006CrossRefPubMedGoogle Scholar
  53. Militon C, Jézéquel R, Gilbert F, Corsellis Y, Sylvi L, Cravo-Laureau C, Duran R, Cuny P (2015) Dynamics of bacterial assemblages and removal of polycyclic aromatic hydrocarbons in oil-contaminated coastal marine sediments subjected to contrasted oxygen regimes. Environ Sci Pollut Res 22:15260–15272.  https://doi.org/10.1007/s11356-015-4510-yCrossRefGoogle Scholar
  54. Misson B, Garnier C, Lauga B, Dang DH, Ghiglione JF, Mullot JU, Duran R, Pringault O (2016) Chemical multi-contamination drives benthic prokaryotic diversity in the anthropized. Toulon Bay Sci Total Environ 556:319–329.  https://doi.org/10.1016/j.scitotenv.2016.02.038CrossRefPubMedGoogle Scholar
  55. National Research Council (US) Committee on Oil in the Sea (2003). Oil in the Sea III: Inputs, Fates, and Effects. Washington, DC: National Academies PressGoogle Scholar
  56. Nikolopoulou M, Kalogerakis N (2009) Biostimulation strategies for fresh and chronically polluted marine environments with petroleum hydrocarbons. J Chem Technol Biotechnol 84:802–807.  https://doi.org/10.1002/jctb.2182CrossRefGoogle Scholar
  57. Nogales B, Aguiló-Ferretjans MM, Martín-Cardona C, Lalucat J, Bosch R (2007) Bacterial diversity, composition and dynamics in and around recreational coastal areas. Environ Microbiol 9:1913–1929.  https://doi.org/10.1111/j.1462-2920.2007.01308.xCrossRefPubMedGoogle Scholar
  58. Nogales B, Lanfranconi MP, Piña-Villalonga JM, Bosch R (2011) Anthropogenic perturbations in marine microbial communities. FEMS Microbiol Rev 35:275–298.  https://doi.org/10.1111/j.1574-6976.2010.00248.xCrossRefPubMedGoogle Scholar
  59. Paissé S, Coulon F, Goñi-Urriza M, Peperzak L, McGenity TJ, Duran R (2008) Structure of bacterial communities along a hydrocarbon contamination gradient in a coastal sediment. FEMS Microbiol Ecol 66:295–305.  https://doi.org/10.1111/j.1574-6941.2008.00589.xCrossRefPubMedGoogle Scholar
  60. Païssé S, Goñi-Urriza M, Coulon F, Duran R (2010) How a bacterial community originating from a contaminated coastal sediment responds to an oil input. Microb Ecol 60:394–405.  https://doi.org/10.1007/s00248-010-9721-7CrossRefPubMedGoogle Scholar
  61. Quero GM, Cassin D, Botter M, Perini L, Luna GM (2015) Patterns of benthic bacterial diversity in coastal areas contaminated by heavy metals, polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs). Front Microbiol 6:1053.  https://doi.org/10.3389/fmicb.2015.01053CrossRefPubMedPubMedCentralGoogle Scholar
  62. Rodriguez LM, Overholt WA, Hagan C, Huettel M, Kostka JE, Konstantinidis KT (2015) Microbial community successional patterns in beach sands impacted by the Deepwater horizon oil spill. ISME J 9:1928–1940.  https://doi.org/10.1038/ismej.2015.5CrossRefGoogle Scholar
  63. Röling WFM, Milner MG, Jones DM, Lee K, Daniel F, Swannell RJP, Head IM (2002) Robust hydrocarbon degradation and dynamics of bacterial communities during nutrient-enhanced oil spill bioremediation. Appl Environ Microbiol 68:5537–5548CrossRefGoogle Scholar
  64. Rosano-Hernández MC, Ramírez-Saad H, Fernández-Linares L (2012) Petroleum-influenced beach sediments of the Campeche Bank, Mexico: diversity and bacterial community structure assessment. J Environ Manag 95:325–331.  https://doi.org/10.1016/j.jenvman.2011.06.046CrossRefGoogle Scholar
  65. Sauret C, Christaki U, Moutsaki P, Hatzianestis I, Gogou A, Ghiglione J-F (2012) Influence of pollution history on the response of coastal bacterial and nanoeukaryote communities to crude oil and biostimulation assays. Mar Environ Res 79:70–78.  https://doi.org/10.1016/j.marenvres.2012.05.006CrossRefPubMedGoogle Scholar
  66. Sommer U, Peter KH, Genitsaris S, Moustaka-Gouni M (2017) Do marine phytoplankton follow Bergmann’s rule sensu lato? Biol Rev 92:1011–1026.  https://doi.org/10.1111/brv.12266CrossRefPubMedGoogle Scholar
  67. Stauffert M, Cravo-Laureau C, Jézéquel R, Barantal S, Cuny P, Gilbert F, Cagnon C, Militon C, Amouroux D, Mahdaoui F, Bouyssiere B, Stora G, Merlin FX, Duran R (2013) Impact of oil on bacterial community structure in bioturbated sediments. PLoS One 8:e65347.  https://doi.org/10.1371/journal.pone.0065347CrossRefPubMedPubMedCentralGoogle Scholar
  68. Stauffert M, Cravo-Laureau C, Duran R (2015a) Dynamic of sulphate-reducing microorganisms in petroleum-contaminated marine sediments inhabited by the polychaete Hediste diversicolor. Environ Sci Pollut Res 22:15273–15284.  https://doi.org/10.1007/s11356-014-3624-yCrossRefGoogle Scholar
  69. Stauffert M, Cravo-Laureau C, Duran R (2015b) Structure of hydrocarbonoclastic nitrate-reducing bacterial communities in bioturbated coastal marine sediments. FEMS Microbiol Ecol 89:580–593.  https://doi.org/10.1111/1574-6941.12359CrossRefGoogle Scholar
  70. Sun MY, Dafforn KA, Brown MV, Johnston EL (2012) Bacterial communities are sensitive indicators of contaminant stress. Mar Pollut Bull 64:1029–1038.  https://doi.org/10.1016/j.marpolbul.2012.01.035CrossRefPubMedGoogle Scholar
  71. Sun MY, Dafforn KA, Johnston EL, Brown MV (2013) Core sediment bacteria drive community response to anthropogenic contamination over multiple environmental gradients. Environ Microbiol 15:2517–2531.  https://doi.org/10.1111/1462-2920.12133CrossRefPubMedGoogle Scholar
  72. Teramoto M, Queck SY, Ohnishi K (2013) Specialized hydrocarbonoclastic bacteria prevailing in seawater around a port in the strait of Malacca. PLoS One 8:e66594.  https://doi.org/10.1371/journal.pone.0066594CrossRefPubMedPubMedCentralGoogle Scholar
  73. Tinta T, Vojvoda J, Mozetic P, Talaber I, Vodopivec M, Malfatti F, Turk V (2015) Bacterial community shift is induced by dynamic environmental parameters in a changing coastal ecosystem (northern Adriatic, northeastern Mediterranean Sea) – a 2-year time-series study. Environ Microbiol 17:3581–3596.  https://doi.org/10.1111/1462-2920.12519CrossRefPubMedGoogle Scholar
  74. Venkidusamy K, Megharaj M (2016) A novel electrophototrophic bacterium: Rhodopseudomonas palustris strain RP2, exhibits hydrocarbonoclastic potential in anaerobic environments. Front Microbiol 7:1071.  https://doi.org/10.3389/fmicb.2016.01071CrossRefPubMedPubMedCentralGoogle Scholar
  75. Vitte I, Duran R, Jézéquel R, Caumette P, Cravo-Laureau C (2011) Effect of oxic/anoxic switches on bacterial communities and PAH biodegradation in an oil-contaminated sludge. Environ Sci Pollut Res 18:1022–1032.  https://doi.org/10.1007/s11356-010-0435-7CrossRefGoogle Scholar
  76. Vitte I, Duran R, Hernandez-Raquet G, Mounier J, Jézéquel R, Bellet V, Balaguer P, Caumette P, Cravo-Laureau C (2013) Dynamics of metabolically active bacterial communities involved in PAH and toxicity elimination from oil-contaminated sludge during anoxic/oxic oscillations. Appl Microbiol Biotechnol 97:4199–4211.  https://doi.org/10.1007/s00253-012-4219-5CrossRefPubMedGoogle Scholar
  77. Wang L, Liu L, Zheng B, Zhu Y, Wang X (2013) Analysis of the bacterial community in the two typical intertidal sediments of Bohai Bay, China by pyrosequencing. Mar Pollut Bull 72:181–187.  https://doi.org/10.1016/j.marpolbul.2013.04.005CrossRefPubMedGoogle Scholar
  78. Ward CS, Yung CM, Davis KM, Blinebry SK, Williams TC, Johnson ZI, Hunt DE (2017) Annual community patterns are driven by seasonal switching between closely related marine bacteria. ISME J 11:1412–1422.  https://doi.org/10.1038/ismej.2017.4CrossRefPubMedPubMedCentralGoogle Scholar
  79. Yakimov MM, Timmis KN, Golyshin PN (2007) Obligate oil-degrading marine bacteria. Curr Opin Biotechnol 18:257–266.  https://doi.org/10.1016/j.copbio.2007.04.006CrossRefPubMedGoogle Scholar
  80. Zhang W, Ki J-S, Qian P-Y (2008) Microbial diversity in polluted harbor sediments I: bacterial community assessment based on four clone libraries of 16S rDNA. Estuar Coast Shelf Sci 76:668–681.  https://doi.org/10.1016/j.ecss.2007.07.040CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Equipe Environnement et Microbiologie, MELODY groupUniversité de Pau et des Pays de l’Adour, IPREM UMR CNRS 5254PauFrance

Personalised recommendations