Microbial Communities Responding to Deep-Sea Hydrocarbon Spills

  • Molly C. RedmondEmail author
  • David L. Valentine
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)


The 2010 Deepwater Horizon oil spill in the Gulf of Mexico can be considered the world’s first deep-sea hydrocarbon spill. Deep-sea hydrocarbon spills occur in a different setting than surface oil spills, and the organisms that respond must be adapted to this low-temperature, high-pressure environment. The hydrocarbon composition can also be quite different than at the sea surface, with high concentrations of dissolved hydrocarbons, including natural gas, and suspended droplets of petroleum. We discuss the bacteria that may respond to these spills and factors that affect their abundance, based on data collected during the Deepwater Horizon spill and in microcosm experiments in the following years.



DLV was supported by NSF OCE-1756947.


  1. Bacosa HP, Erdner DL, Rosenheim BE, Shetty P, Seitz KW, Baker BJ, Liu Z (2018) Hydrocarbon degradation and response of seafloor sediment bacterial community in the northern Gulf of Mexico to light Louisiana sweet crude oil. ISME J. Scholar
  2. Bælum J, Borglin S, Chakraborty R, Fortney JL, Lamendella R, Mason OU, Auer M, Zemla M, Bill M, Conrad ME, Malfatti SA, Tringe SG, Holman H-Y, Hazen TC, Jansson JK (2012) Deep-sea bacteria enriched by oil and dispersant from the Deepwater Horizon spill. Environ Microbiol 14:2405–2416CrossRefGoogle Scholar
  3. Bagby SC, Reddy CM, Aeppli C, Fisher GB, Valentine DL (2017) Persistence and biodegradation of oil at the ocean floor following Deepwater Horizon. Proc Natl Acad Sci U S A 114:E9–E18CrossRefGoogle Scholar
  4. Beck DA, Kalyuzhnaya MG, Malfatti S, Tringe SG, del Rio TG, Ivanova N, Lidstrom ME, Chistoserdova L (2013) A metagenomic insight into freshwater methane-utilizing communities and evidence for cooperation between the Methylococcaceae and the Methylophilaceae. PeerJ 1:e23CrossRefGoogle Scholar
  5. Brakstad OG, Nonstad I, Faksness L-G, Brandvik PJ (2008) Responses of microbial communities in Arctic sea ice after contamination by crude petroleum oil. Microb Ecol 55:540–552CrossRefGoogle Scholar
  6. Brakstad OG, Throne-Holst M, Netzer R, Stoeckel DM, Atlas RM (2015) Microbial communities related to biodegradation of dispersed Macondo oil at low seawater temperature with Norwegian coastal seawater. Microb Biotechnol 8:989–998CrossRefGoogle Scholar
  7. Brakstad OG, Ribicic D, Winkler A, Netzer R (2018) Biodegradation of dispersed oil in seawater is not inhibited by a commercial oil spill dispersant. Mar Pollut Bull 129:555–561CrossRefGoogle Scholar
  8. Buchan A, LeCleir GR, Gulvik CA, González JM (2014) Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat Rev Microbiol 12:686–698CrossRefGoogle Scholar
  9. Campeão ME, Reis L, Leomil L, de Oliveira L, Otsuki K, Gardinali P, Pelz O, Valle R, Thompson FL, Thompson CC (2017) The deep-sea microbial community from the Amazonian Basin associated with oil degradation. Front Microbiol 8:1019CrossRefGoogle Scholar
  10. Chakraborty R, Borglin SE, Dubinsky EA, Andersen GL, Hazen TC (2012) Microbial response to the MC-252 oil and Corexit 9500 in the Gulf of Mexico. Front Microbiol 3:357PubMedPubMedCentralGoogle Scholar
  11. Coulon F, McKew BA, Osborn AM, McGenity TJ, Timmis KN (2007) Effects of temperature and biostimulation on oil-degrading microbial communities in temperate estuarine waters. Environ Microbiol 9:177–189CrossRefGoogle Scholar
  12. Crespo-Medina M, Meile C, Hunter K, Diercks A, Asper V, Orphan V, Tavormina P, Nigro L, Battles J, Chanton J (2014) The rise and fall of methanotrophy following a deepwater oil-well blowout. Nat Geosci 7:423–427CrossRefGoogle Scholar
  13. Crespo-Medina M, Meile CD, Hunter KS, Diercks AR, Asper VL, Orphan VJ, Tavormina PL, Nigro LM, Battles JJ, Chanton JP, Shiller AM, Joung DJ, Amon RMW, Bracco A, Montoya JP, Villareal TA, Wood AM, Joye SB (2015) Addendum: the rise and fall of methanotrophy following a deepwater oil-well blowout. Nat Geosci 8:490CrossRefGoogle Scholar
  14. Cui Z, Xu G, Li Q, Gao W, Zheng L (2013) Genome sequence of the pyrene- and fuoranthene-degrading bacterium Cycloclasticus sp. strain PY97M. Genome Announc 1:e00536–e00513PubMedPubMedCentralGoogle Scholar
  15. D’Ambrosio L, Ziervogel K, MacGregor B, Teske A, Arnosti C (2014) Composition and enzymatic function of particle-associated and free-living bacteria: a coastal/offshore comparison. ISME J 8:2167–2179CrossRefGoogle Scholar
  16. Delmont TO, Eren AM (2017) Simulations predict microbial responses in the environment? This environment disagrees retrospectively. Proc Natl Acad Sci U S A. Scholar
  17. Dubinsky EA, Conrad ME, Chakraborty R, Bill M, Borglin SE, Hollibaugh JT, Mason OU, Piceno YM, Reid FC, Stringfellow WT (2013) Succession of hydrocarbon-degrading bacteria in the aftermath of the Deepwater Horizon oil spill in the Gulf of Mexico. Environ Sci Technol 47:10860–10867CrossRefGoogle Scholar
  18. Eren AM, Esen ÖC, Quince C, Vineis JH, Morrison HG, Sogin ML, Delmont TO (2015) Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ 3:e1319CrossRefGoogle Scholar
  19. Gros J, Socolofsky SA, Dissanayake AL, Jun I, Zhao L, Boufadel MC, Reddy CM, Arey JS (2017) Petroleum dynamics in the sea and influence of subsea dispersant injection during Deepwater Horizon. Proc Natl Acad Sci U S A 114:10065–10070CrossRefGoogle Scholar
  20. Guibert LM, Loviso CL, Borglin S, Jansson JK, Dionisi HM, Lozada M (2016) Diverse bacterial groups contribute to the alkane degradation potential of chronically polluted subantarctic coastal sediments. Microb Ecol 71:100–112CrossRefGoogle Scholar
  21. Gutierrez T, Singleton DR, Berry D, Yang T, Aitken MD, Teske A (2013) Hydrocarbon-degrading bacteria enriched by the Deepwater Horizon oil spill identified by cultivation and DNA-SIP. ISME J 7:2091–2104CrossRefGoogle Scholar
  22. Hazen T, Dubinsky E, DeSantis T, Andersen G, Piceno Y, Singh N, Jansson J, Probst A, Borglin S, Fortney J (2010) Deep-sea oil plume enriches indigenous oil-degrading bacteria. Science 330:204–208CrossRefGoogle Scholar
  23. Hu P, Dubinsky EA, Probst AJ, Wang J, Sieber CMK, Tom LM, Gardinali PR, Banfield JF, Atlas RM, Andersen GL (2017) Simulation of Deepwater Horizon oil plume reveals substrate specialization within a complex community of hydrocarbon degraders. Proc Natl Acad Sci U S A 114:7432–7437CrossRefGoogle Scholar
  24. Joung D, Shiller AM (2013) Trace element distributions in the water column near the Deepwater Horizon well blowout. Environ Sci Technol 47:2161–2168CrossRefGoogle Scholar
  25. Joye SB, Leifer I, MacDonald IR, Chanton JP, Meile CD, Teske AP, Kostka JE, Chistoserdova L, Coffin R, Hollander D, Kastner M, Montoya JP, Rehder G, Solomon E, Treude T, Villareal TA (2011) Comment on “A persistent oxygen anomaly reveals the fate of spilled methane in the deep Gulf of Mexico”. Science 332:1033–1033CrossRefGoogle Scholar
  26. Kasai Y, Kishira H, Harayama S (2002) Bacteria belonging to the genus Cycloclasticus play a primary role in the degradation of aromatic hydrocarbons released in a marine environment. Appl Environ Microbiol 68:5625–5633CrossRefGoogle Scholar
  27. Kessler JD, Valentine DL, Redmond MC, Du M, Chan EW, Mendes SD, Quiroz EW, Villanueva CJ, Shusta SS, Werra LM (2011) A persistent oxygen anomaly reveals the fate of spilled methane in the deep Gulf of Mexico. Science 331:312–315CrossRefGoogle Scholar
  28. King G, Smith C, Tolar B, Hollibaugh J (2013) Analysis of composition and structure of coastal to mesopelagic bacterioplankton communities in the Northern Gulf of Mexico. Front Microbiol 3:438Google Scholar
  29. Kleindienst S, Seidel M, Ziervogel K, Grim S, Loftis K, Harrison S, Malkin SY, Perkins MJ, Field J, Sogin ML, Dittmar T, Passow U, Medeiros PM, Joye SB (2015) Chemical dispersants can suppress the activity of natural oil-degrading microorganisms. Proc Natl Acad Sci U S A 112:14900–14905CrossRefGoogle Scholar
  30. Kleindienst S, Grim S, Sogin M, Bracco A, Crespo-Medina M, Joye SB (2016a) Diverse, rare microbial taxa responded to the Deepwater Horizon deep-sea hydrocarbon plume. ISME J 10:400–415CrossRefGoogle Scholar
  31. Kleindienst S, Seidel M, Ziervogel K, Grim S, Loftis K, Harrison S, Malkin SY, Perkins MJ, Field J, Sogin ML, Dittmar T, Passow U, Medeiros P, Joye SB (2016b) Reply to Prince et al.: ability of chemical dispersants to reduce oil spill impacts remains unclear. Proc Natl Acad Sci U S A 113:E1422–E1423CrossRefGoogle Scholar
  32. Krause SMB, Johnson T, Samadhi Karunaratne Y, Fu Y, Beck DAC, Chistoserdova L, Lidstrom ME (2017) Lanthanide-dependent cross-feeding of methane-derived carbon is linked by microbial community interactions. Proc Natl Acad Sci U S A 114:358–363CrossRefGoogle Scholar
  33. Kujawinski EB, Kido Soule MC, Valentine DL, Boysen AK, Longnecker K, Redmond MC (2011) Fate of dispersants associated with the Deepwater Horizon oil spill. Environ Sci Technol 45:1298–1306CrossRefGoogle Scholar
  34. Lai Q, Li W, Wang B, Yu Z, Shao Z (2012) Complete genome sequence of the pyrene-degrading bacterium Cycloclasticus sp. strain P1. J Bacteriol 194:6677CrossRefGoogle Scholar
  35. Liu J, Bacosa HP, Liu Z (2017a) Potential environmental factors affecting oil-degrading bacterial populations in deep and surface waters of the Northern Gulf of Mexico. Front Microbiol 7:2131CrossRefGoogle Scholar
  36. Liu J, Techtmann SM, Woo HL, Ning D, Fortney JL, Hazen TC (2017b) Rapid response of Eastern Mediterranean deep sea microbial communities to oil. Sci Rep 7:5762CrossRefGoogle Scholar
  37. Lofthus S, Netzer R, Lewin AS, Heggeset TM, Haugen T, Brakstad OG (2018) Biodegradation of n-alkanes on oil–seawater interfaces at different temperatures and microbial communities associated with the degradation. Biodegradation 29:141–157CrossRefGoogle Scholar
  38. Lyu L-N, Ding H, Cui Z, Valentine DL (2018) The wax–liquid transition modulates hydrocarbon respiration rates in Alcanivorax borkumensis SK2. Environ Sci Technol Lett 5:277–282CrossRefGoogle Scholar
  39. Marietou A, Chastain R, Beulig F, Scoma A, Hazen TC, Bartlett DH (2018) The effect of hydrostatic pressure on enrichments of hydrocarbon degrading microbes from the Gulf of Mexico following the Deepwater Horizon oil spill. Front Microbiol 9:808CrossRefGoogle Scholar
  40. Maruyama A, Ishiwata H, Kitamura K, Sunamura M, Fujita T, Matsuo M, Higashihara T (2003) Dynamics of microbial populations and strong selection for Cycloclasticus pugetii following the Nakhodka oil spill. Microb Ecol 46:442–453CrossRefGoogle Scholar
  41. Mason OU, Hazen TC, Borglin S, Chain PS, Dubinsky EA, Fortney JL, Han J, Holman H-YN, Hultman J, Lamendella R (2012) Metagenome, metatranscriptome and single-cell sequencing reveal microbial response to Deepwater Horizon oil spill. ISME J 6:1715–1727CrossRefGoogle Scholar
  42. McCarren J, Becker JW, Repeta DJ, Shi Y, Young CR, Malmstrom RR, Chisholm SW, DeLong EF (2010) Microbial community transcriptomes reveal microbes and metabolic pathways associated with dissolved organic matter turnover in the sea. Proc Natl Acad Sci U S A 107:16420–16427CrossRefGoogle Scholar
  43. McKew B, Coulon F, Osborn A, Timmis K, McGenity T (2007) Determining the identity and roles of oil-metabolizing marine bacteria from the Thames estuary, UK. Environ Microbiol 9:165–176CrossRefGoogle Scholar
  44. Mendes SD, Redmond MC, Voigritter K, Perez C, Scarlett R, Valentine DL (2015) Marine microbes rapidly adapt to consume ethane, propane, and butane within the dissolved hydrocarbon plume of a natural seep. J Geophys Res Oceans 120:1937–1953Google Scholar
  45. Messina E, Denaro R, Crisafi F, Smedile F, Cappello S, Genovese M, Genovese L, Giuliano L, Russo D, Ferrer M, Golyshin P, Yakimov MM (2016) Genome sequence of obligate marine polycyclic aromatic hydrocarbons-degrading bacterium Cycloclasticus sp. 78-ME, isolated from petroleum deposits of the sunken tanker Amoco Milford Haven, Mediterranean Sea. Mar Genomics 25:11–13CrossRefGoogle Scholar
  46. Methé B, Nelson K, Deming J, Momen B, Melamud E, Zhang X, Moult J, Madupu R, Nelson W, Dodson R (2005) The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc Natl Acad Sci U S A 102:10913–10918CrossRefGoogle Scholar
  47. Mishamandani S, Gutierrez T, Aitken M (2014) DNA-based stable isotope probing coupled with cultivation methods implicates Methylophaga in hydrocarbon degradation. Front Microbiol 5:76CrossRefGoogle Scholar
  48. Powell S, Bowman J, Snape I (2004) Degradation of nonane by bacteria from Antarctic marine sediment. Polar Biol 27:573–578CrossRefGoogle Scholar
  49. Prince RC, Coolbaugh TS, Parkerton TF (2016a) Oil dispersants do facilitate biodegradation of spilled oil. Proc Natl Acad Sci U S A 113:E1421–E1421CrossRefGoogle Scholar
  50. Prince RC, Nash GW, Hill SJ (2016b) The biodegradation of crude oil in the deep ocean. Mar Pollut Bull 111:354–357CrossRefGoogle Scholar
  51. Prince RC, Butler JD, Redman AD (2017) The rate of crude oil biodegradation in the sea. Environ Sci Technol 51:1278–1284CrossRefGoogle Scholar
  52. Reddy CM, Arey JS, Seewald JS, Sylva SP, Lemkau KL, Nelson RK, Carmichael CA, McIntyre CP, Fenwick J, Ventura GT, Van Mooy BAS, Camilli R (2012) Composition and fate of gas and oil released to the water column during the Deepwater Horizon oil spill. Proc Natl Acad Sci U S A 109:20229–20234CrossRefGoogle Scholar
  53. Redmond MC, Valentine DL (2012) Temperature and natural gas structured the microbial community response to the Deepwater Horizon oil spill. Proc Natl Acad Sci U S A 109:20292–20297Google Scholar
  54. Redmond MC, Valentine DL, Sessions AL (2010) Identification of novel methane-, ethane-, and propane-oxidizing bacteria at marine hydrocarbon seeps by stable isotope probing. Appl Environ Microbiol 76:6412–6422CrossRefGoogle Scholar
  55. Ribicic D, Netzer R, Hazen TC, Techtmann SM, Drabløs F, Brakstad OG (2018a) Microbial community and metagenome dynamics during biodegradation of dispersed oil reveals potential key-players in cold Norwegian seawater. Mar Pollut Bull 129:370–378CrossRefGoogle Scholar
  56. Ribicic D, Netzer R, Winkler A, Brakstad OG (2018b) Microbial communities in seawater from an Arctic and a temperate Norwegian fjord and their potentials for biodegradation of chemically dispersed oil at low seawater temperatures. Mar Pollut Bull 129:308–317CrossRefGoogle Scholar
  57. Rivers AR, Sharma S, Tringe SG, Martin J, Joye SB, Moran MA (2013) Transcriptional response of bathypelagic marine bacterioplankton to the Deepwater Horizon oil spill. ISME J 7:2315–2329CrossRefGoogle Scholar
  58. Rubin-Blum M, Antony CP, Borowski C, Sayavedra L, Pape T, Sahling H, Bohrmann G, Kleiner M, Redmond MC, Valentine DL, Dubilier N (2017) Short-chain alkanes fuel mussel and sponge Cycloclasticus symbionts from deep-sea gas and oil seeps. Nat Microbiol 2:17093CrossRefGoogle Scholar
  59. Ryerson TB, Camilli R, Kessler JD, Kujawinski EB, Reddy CM, Valentine DL, Atlas E, Blake DR, de Gouw J, Meinardi S (2012) Chemical data quantify Deepwater Horizon hydrocarbon flow rate and environmental distribution. Proc Natl Acad Sci U S A 109:20246–20253CrossRefGoogle Scholar
  60. Scoma A, Barbato M, Hernandez-Sanabria E, Mapelli F, Daffonchio D, Borin S, Boon N (2016) Microbial oil-degradation under mild hydrostatic pressure (10 MPa): which pathways are impacted in piezosensitive hydrocarbonoclastic bacteria? Sci Rep 6:23526CrossRefGoogle Scholar
  61. Shiller AM, Chan EW, Joung DJ, Redmond MC, Kessler JD (2017) Light rare earth element depletion during Deepwater Horizon blowout methanotrophy. Sci Rep 7:10389CrossRefGoogle Scholar
  62. Techtmann SM, Zhuang M, Campo P, Holder E, Elk M, Hazen TC, Conmy R, Santo Domingo JW (2017) Corexit 9500 enhances oil biodegradation and changes active bacterial community structure of oil-enriched microcosms. Appl Environ Microbiol 83:e03462–e03416CrossRefGoogle Scholar
  63. Valentine DL, Kessler JD, Redmond MC, Mendes SD, Heintz MB, Farwell C, Hu L, Kinnaman FS, Yvon-Lewis S, Du M (2010) Propane respiration jump-starts microbial response to a deep oil spill. Science 330:208–211CrossRefGoogle Scholar
  64. Valentine DL, Mezic I, Maćešić S, Črnjarić-Žic N, Ivic S, Hogand P, Fonoberov VA, Loire S (2012) Dynamic auto-inoculation and the microbial ecology of a deep water hydrocarbon irruption. Proc Natl Acad Sci U S A 109:20286–20291CrossRefGoogle Scholar
  65. Wang B, Lai Q, Cui Z, Tan T, Shao Z (2008) A pyrene-degrading consortium from deep-sea sediment of the West Pacific and its key member Cycloclasticus sp. P1. Environ Microbiol 10:1948–1963CrossRefGoogle Scholar
  66. Yakimov MM, Gentile G, Bruni V, Cappello S, D’Auria G, Golyshin PN, Giuliano L (2004) Crude oil-induced structural shift of coastal bacterial communities of rod bay (Terra Nova Bay, Ross Sea, Antarctica) and characterization of cultured cold-adapted hydrocarbonoclastic bacteria. FEMS Microbiol Ecol 49:419–432CrossRefGoogle Scholar
  67. Yang T, Nigro LM, Gutierrez T, D’Ambrosio L, Joye SB, Highsmith R, Teske A (2016) Pulsed blooms and persistent oil-degrading bacterial populations in the water column during and after the Deepwater Horizon blowout. Deep-Sea Res II Top Stud Oceanogr 129:282–291CrossRefGoogle Scholar
  68. Yu Z, Chistoserdova L (2017) Communal metabolism of methane and the rare earth element switch. J Bacteriol 199:e00328-17Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Biological SciencesUniversity of North Carolina at CharlotteCharlotteUSA
  2. 2.Department of Earth Science and Marine Science InstituteUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations