Microbial Communities in Oil Sands Tailings: Their Implications in Biogeochemical Processes and Tailings Management

  • Tariq SiddiqueEmail author
  • Sebastian Stasik
  • Mohd Faidz Mohamad Shahimin
  • Katrin Wendt-Potthoff
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)


Bitumen extraction from surface-mined oil sands ores at a gigantic scale produces enormous volumes of fluid fine tailings (FFT) as a waste that are deposited in oil sands tailings ponds (OSTP). Increasing footprint of OSTP and related environmental consequences have drawn public scrutiny and warrant effective management of FFT. OSTP harbor diverse microbial communities that drive many biogeochemical processes in OSTP. In this chapter, we describe the microbial pathways of methanogenesis, and sulfur, nitrogen, and iron transformations in tailings that mitigate toxicity of organic constituents through biodegradation, accelerate consolidation of FFT, and regulate greenhouse gas emissions from OSTP. These microbial processes can also affect FFT reclamation under end-pit-lake (wet) scenario. Understanding microbial and geochemical composition of tailings will help design better strategies for utilizing tailings products for upland (dry) reclamation as well.



The authors greatly acknowledge the Helmholtz-Alberta Initiative, NSERC, Canada Foundation for Innovation, Alberta Innovates Energy and Environment Solutions, the Institute for Oil Sands Innovation, Syncrude Canada Ltd. Shell Albian Sands, Canadian Natural Resources Ltd., Suncor Energy, and Total E&P Canada for research funding, resource materials and research infrastructure. We thank our many research leaders, collaborators, and co-authors, including Julia Foght, Phil Fedorak, Rejendar Gupta, Ania Ulrich, Christopher Weisener and Camilla Nesbø; industry advisors, particularly Mike MacKinnon and Tara Penner (Syncrude); André Sobolewski (Microbial Technologies) for providing insight and information from early studies; and Zvonko Burkus (Alberta Environment and Sustainable Resource Development) for valuable discussions. Finally, we gratefully acknowledge the contributions of Kathy Semple, Alsu Kuznetsova, Petr Kuznetsov, Carmen Li, Matthias Koschorreck and invaluable laboratory members too numerous to list who have been essential to the authors’ oil sands research.


  1. Abu Laban N, Dao A, Foght J (2015) DNA stable-isotope probing of oil sands tailings pond enrichment cultures reveals different key players for toluene degradation under methanogenic and sulfidogenic conditions. FEMS Microbiol Ecol 91:fiv039Google Scholar
  2. Allen EW (2008) Process water treatment in Canada’s oil sands industry: I. Target pollutants and treatment objectives. J Environ Eng Sci 7:123–138CrossRefGoogle Scholar
  3. Amos RT, Bekins BA, Cozzarelli IM et al (2012) Evidence for iron-mediated anaerobic methane oxidation in a crude oil-contaminated aquifer. Geobiology 10:506–517PubMedCrossRefGoogle Scholar
  4. An D, Caffrey SM, Soh J et al (2013a) Metagenomics of hydrocarbon resource environments indicates aerobic taxa and genes to be unexpectedly common. Environ Sci Technol 47:10708–10717PubMedPubMedCentralCrossRefGoogle Scholar
  5. An D, Brown D, Chatterjee I et al (2013b) Microbial community and potential functional gene diversity involved in anaerobic hydrocarbon degradation and methanogenesis in an oil sands tailings pond. Genome 56:612–618PubMedCrossRefGoogle Scholar
  6. Arkell N, Kuznetsov P, Kuznetsova A et al (2015) Microbial metabolism alters pore water chemistry and increases consolidation of oil sands tailings. J Environ Qual 44:145–153PubMedCrossRefGoogle Scholar
  7. Barrow MP, Witt M, Headley JV, Peru KM (2010) Athabasca oil sands process water: characterization by atmospheric pressure photoionization and electrospray ionization Fourier Transform Ion Cyclotron resonance mass spectrometry. Anal Chem 82:3727–3735PubMedCrossRefGoogle Scholar
  8. Bekins BA, Cozzarelli IM, Erickson ML, Steenson RA, Thorn KA (2016) Crude oil metabolites in groundwater at two spill sites. Groundwater 54:681–691CrossRefGoogle Scholar
  9. BGC Engineering Inc (2010) Oil sands tailings technology review. Oil Sands Research and Information Network UoA, Edmonton, AB, OSRIN Report No. TR-1, pp 136Google Scholar
  10. Boll M, Heider J (2010) Anaerobic degradation of hydrocarbons: mechanisms of C-H-bond activation in the absence of oxygen. In: Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 1011–1024CrossRefGoogle Scholar
  11. Bond DR, Lovley DR (2002) Reduction of Fe(III) oxide by methanogens in the presence and absence of extracellular quinones. Environ Microbiol 4:115–124PubMedCrossRefGoogle Scholar
  12. Bordenave S, Kostenko V, Dutkoski M et al (2010) Relation between the activity of anaerobic microbial populations in oil sands tailings ponds and the sedimentation of tailings. Chemosphere 81:663–668PubMedCrossRefGoogle Scholar
  13. Bray MS, Wu J, Reed BC et al (2017) Shifting microbial communities sustain multiyear iron reduction and methanogenesis in ferruginous sediment incubations. Geobiology 15:678–689PubMedCrossRefGoogle Scholar
  14. Brown LD, Ulrich A (2015) Oil sands naphthenic acids: a review of properties, measurement, and treatment. Chemosphere 127:276–290PubMedCrossRefGoogle Scholar
  15. Brown D, Ramos-Padrón E, Gieg L et al (2013) Effect of calcium ions and anaerobic microbial activity on sedimentation of oil sands tailings. Int Biodeterior Biodegrad 81:9–16CrossRefGoogle Scholar
  16. Burkus Z, Wheler J, Pletcher S (2014) GHG emissions from oil sands tailings ponds: overview and modeling based on fermentable substrates. Alberta Environment and Sustainable Resource Development. Electronic report available at, pp 2014. Last accessed Dec 2017
  17. Callaghan AV (2013) Enzymes involved in the anaerobic oxidation of n-alkanes: from methane to long-chain paraffins. Front Microbiol 4:89PubMedPubMedCentralCrossRefGoogle Scholar
  18. Callaghan AV, Gieg LM, Kropp KG et al (2006) Comparison of mechanisms of alkane metabolism under sulfate-reducing conditions among two bacterial isolates and a bacterial consortium. Appl Environ Microbiol 72:4274–4282PubMedPubMedCentralCrossRefGoogle Scholar
  19. Chalaturnyk RJ, Scott JD, Özüm B (2002) Management of oil sands tailings. Pet Sci Technol 20:1025–1046CrossRefGoogle Scholar
  20. Chen M, Walshe G, Chi Fru E et al (2013) Microcosm assessment of the biogeochemical development of sulfur and oxygen in oil sands fluid fine tailings. Appl Geochem 37:1–11CrossRefGoogle Scholar
  21. Cheng L, Ding C, Li Q et al (2013) DNA-SIP reveals that Syntrophaceae play an important role in methanogenic hexadecane degradation. PLoS One 8:e66784PubMedPubMedCentralCrossRefGoogle Scholar
  22. Chi Fru E, Chen M, Walshe G et al (2013) Bioreactor studies predict whole microbial population dynamics in oil sands tailings ponds. Appl Microbiol Biotechnol 97:3215–3224PubMedCrossRefGoogle Scholar
  23. Clothier LN, Gieg LM (2016) Anaerobic biodegradation of surrogate naphthenic acids. Water Res 90:156–166PubMedCrossRefGoogle Scholar
  24. Coleman ML, Hedrick DB, Lovley DR et al (1993) Reduction of Fe(III) in sediments by sulphate-reducing bacteria. Nature 361:436–438CrossRefGoogle Scholar
  25. Collins CEV, Foght JM, Siddique T (2016) Co-occurrence of methanogenesis and N2 fixation in oil sands tailings. Sci Total Environ 565:306–312PubMedCrossRefGoogle Scholar
  26. Dean C, Xiao Y, Roberts DJ (2016) Enriching acid rock drainage related microbial communities from surface-deposited oil sands tailings. Can J Microbiol 62:870–879PubMedCrossRefGoogle Scholar
  27. Demeter MA, Lemire J, George I et al (2014) Harnessing oil sands microbial communities for use in ex situ naphthenic acid bioremediation. Chemosphere 97:78–85PubMedCrossRefGoogle Scholar
  28. Dobbin PS, Carter JP, Juan CG-S et al (1999) Dissimilatory Fe(III) reduction by Clostridium beijerinckii isolated from freshwater sediment using Fe(III) maltol enrichment. FEMS Microbiol Lett 176:131–138PubMedCrossRefGoogle Scholar
  29. Dompierre KA, Lindsay MBJ, Cruz-Hernandez P et al (2016) Initial geochemical characteristics of fluid fine tailings in an oil sands end pit lake. Sci Total Environ 556:196–206PubMedCrossRefGoogle Scholar
  30. Eckert WF, Masliyah JH, Gray MR et al (1996) Prediction of sedimentation and consolidation of fine tails. AIChE J 42:960–972CrossRefGoogle Scholar
  31. Fedorak PM, Coy DL, Salloum MJ, Dudas MJ (2002) Methanogenic potential of tailings samples from oil sands extraction plants. Can J Microbiol 48:21–33PubMedCrossRefPubMedCentralGoogle Scholar
  32. Fedorak PM, Coy DL, Dudas MJ et al (2003) Microbially-mediated fugitive gas production from oil sands tailings and increased tailings densification rates. J Environ Eng Sci 2:199–211CrossRefGoogle Scholar
  33. Foght JM (2008) Anaerobic biodegradation of aromatic hydrocarbons: pathways and prospects. J Mol Microbiol Biotechnol 15:93–120PubMedCrossRefGoogle Scholar
  34. Foght JM, Siddique T (2014) Microbial analysis of CNRL tailings. Report to Canadian Natural Resources Ltd, Aug 2014Google Scholar
  35. Foght JM, Fedorak PM, Westlake DWS (1985) Microbial content and metabolic activities in Syncrude tailings pond. AOSTRA J Res 1:139–146Google Scholar
  36. Foght JM, Gieg LM, Siddique T (2017) The microbiology of oil sands tailings: past, present, future. FEMS Microbiol Ecol 93:fix034CrossRefGoogle Scholar
  37. Folwell BD, McGenity TJ, Price A et al (2016) Exploring the capacity for anaerobic biodegradation of polycyclic aromatic hydrocarbons and naphthenic acids by microbes from oil-sands-process-affected waters. Int Biodeterior Biodegrad 108:214–221CrossRefGoogle Scholar
  38. Fowler SJ, Gutierrez-Zamora M-L, Manefield M, Gieg LM (2014) Identification of toluene degraders in a methanogenic enrichment culture. FEMS Microbiol Ecol 89:625–636PubMedCrossRefGoogle Scholar
  39. Frank RA, Fischer K, Kavanagh R et al (2009) Effect of carboxylic acid content on the acute toxicity of oil sands naphthenic acids. Environ Sci Technol 43:266–271PubMedCrossRefPubMedCentralGoogle Scholar
  40. Gee KF, Yin Poon H, Hashisho Z, Ulrich AC (2017) Effect of naphtha diluent on greenhouse gases and reduced sulfur compounds emissions from oil sands tailings. Sci Total Environ 598:916–924PubMedCrossRefPubMedCentralGoogle Scholar
  41. Gray ND, Sherry A, Grant RJ et al (2011) The quantitative significance of Syntrophaceae and syntrophic partnerships in methanogenic degradation of crude oil alkanes. Environ Microbiol 13:2957–2975PubMedPubMedCentralCrossRefGoogle Scholar
  42. Grundmann O, Behrends A, Rabus R et al (2008) Genes encoding the candidate enzyme for anaerobic activation of n-alkanes in the denitrifying bacterium, strain HxN1. Environ Microbiol 10:376–385PubMedCrossRefPubMedCentralGoogle Scholar
  43. Guezennec AG, Michel C, Bru K et al (2015) Transfer and degradation of polyacrylamide-based flocculants in hydrosystems: a review. Environ Sci Pollut Res 22:6390–6406CrossRefGoogle Scholar
  44. Gunawan Y, Nemati M, Dalai A (2014) Biodegradation of a surrogate naphthenic acid under denitrifying conditions. Water Res 51:11–24PubMedCrossRefGoogle Scholar
  45. Guo C (2009) Rapid densification of the oil sands mature fine tailings (MFT) by microbial activity. PhD thesis, University of Alberta, EdmontonGoogle Scholar
  46. Haack EA, Warren LA (2003) Biofilm hydrous manganese oxyhydroxides and metal dynamics in acid rock drainage. Environ Sci Technol 37:4138–4147PubMedCrossRefPubMedCentralGoogle Scholar
  47. Han X, Scott AC, Fedorak PM et al (2008) Influence of molecular structure on the biodegradability of naphthenic acids. Environ Sci Technol 42:1290–1295PubMedCrossRefGoogle Scholar
  48. Haveroen ME, MacKinnon MD, Fedorak PM (2005) Polyacrylamide added as a nitrogen source stimulates methanogenesis in consortia from various wastewaters. Water Res 39:3333–3341PubMedCrossRefPubMedCentralGoogle Scholar
  49. Headley JV, Peru KM, Tanapat S, Putz G (2002) Biodegradation kinetics of geometric isomers of model naphthenic acids in Athabasca River water. Can Water Res J 27:25–42CrossRefGoogle Scholar
  50. Heider J, Schuhle K (2013) Anaerobic biodegradation of hydrocarbons including methane. In: Rosenberg E et al (eds) The prokaryotes-prokaryotic physiology and biochemistry. Springer, Heidelberg, pp 605–634Google Scholar
  51. Holland KT, Knapp JS, Shoesmith JG (1987) Anaerobic bacteria. Chapman and Hall, New York, pp 130–133CrossRefGoogle Scholar
  52. Holowenko FM, MacKinnon MD, Fedorak PM (2000) Methanogens and sulfate-reducing bacteria in oil sands fine tailings waste. Can J Microbiol 46:927–937PubMedCrossRefPubMedCentralGoogle Scholar
  53. Jahn MK, Haderlein SB, Meckenstock RU (2005) Anaerobic degradation of benzene, toluene, ethylbenzene, and o-xylene in sediment-free iron-reducing enrichment cultures. Appl Environ Microbiol 71:3355–3358PubMedPubMedCentralCrossRefGoogle Scholar
  54. Jaisi DP, Dong H, Liu C (2007) Influence of biogenic Fe(II) on the extent of microbial reduction of Fe(III) in clay minerals nontronite, illite, and chlorite. Geochim Cosmochim Acta 71:1145–1158CrossRefGoogle Scholar
  55. Jiang S, Park S, Yoon Y et al (2013) Methanogenesis facilitated by geobiochemical iron cycle in a novel syntrophic methanogenic microbial community. Environ Sci Technol 47:10078–10084PubMedCrossRefPubMedCentralGoogle Scholar
  56. Johnson RJ, Smith BE, Sutton PA et al (2011) Microbial biodegradation of aromatic alkanoic naphthenic acids is affected by the degree of alkyl side chain branching. ISME J 5:486–496PubMedCrossRefGoogle Scholar
  57. Kaminsky HAW, Etsell TH, Ivey DG, Omotoso O (2008) Characterization of heavy minerals in the Athabasca oil sands. Miner Eng 21:264–271CrossRefGoogle Scholar
  58. Kostka JE, Dalton DD, Skelton H et al (2002) Growth of iron(III)-reducing bacteria on clay minerals as the sole electron acceptor and comparison of growth yields on a variety of oxidized iron forms. Appl Environ Microbiol 68:6256–6262PubMedPubMedCentralCrossRefGoogle Scholar
  59. Kunapuli U, Lueders T, Meckenstock RU (2007) The use of stable isotope probing to identify key iron-reducing microorganisms involved in anaerobic benzene degradation. ISME J 1:643–653PubMedCrossRefGoogle Scholar
  60. Kuznetsov P, Kuznetsova A, Foght JM et al (2015) Oil sands thickened froth treatment tailings exhibit acid rock drainage potential during evaporative drying. Sci Total Environ 505:1–10PubMedCrossRefGoogle Scholar
  61. Kuznetsova A, Kuznetsov P, Foght JM et al (2016) Trace metal mobilization from oil sands froth treatment thickened tailings exhibiting acid rock drainage. Sci Total Environ 571:699–710PubMedCrossRefGoogle Scholar
  62. Larter SR, Head IM (2014) Oil sands and heavy oil: origin and exploitation. Elements 10:277–283CrossRefGoogle Scholar
  63. Lehours AC, Batisson I, Guedon A, Mailhot G, Fonty G (2009) Diversity of culturable bacteria, from the anaerobic zone of the meromictic Lake Pavin, able to perform dissimilatory-iron Reduction in different in vitro conditions. Geomicrobiol J 26:212–223CrossRefGoogle Scholar
  64. Li C (2010) Methanogenesis in oil sands tailings: an analysis of the microbial community involved and its effects on tailings densification. MSc thesis, University of Alberta, EdmontonGoogle Scholar
  65. Liang B, Wang L-Y, Mbadinga SM et al (2015) Anaerolineaceae and Methanosaeta turned to be the dominant microorganisms in alkanes-dependent methanogenic culture after long-term of incubation. AMB Express 5:37PubMedCentralCrossRefPubMedGoogle Scholar
  66. Liu D, Wang H, Dong H et al (2011) Mineral transformations associated with goethite reduction by Methanosarcina barkeri. Chem Geol 288:53–60CrossRefGoogle Scholar
  67. Liu H, Tan S, Yu T, Liu Y (2016) Sulfate reducing bacterial community and in situ activity in mature fine tailings analyzed by real time qPCR and microsensor. J Environ Sci 44:141–147CrossRefGoogle Scholar
  68. Lonergan DJ, Jenter HL, Coates JD et al (1996) Phylogenetic analysis of dissimilatory Fe(III)-reducing bacteria. J Bacteriol 178:2402–2408PubMedPubMedCentralCrossRefGoogle Scholar
  69. Lovley DR (2006) Dissimilatory Fe(III)- and Mn(IV)-reducing prokaryotes. Chapter 1.21, Prokaryotes 2:635–658Google Scholar
  70. Luo F, Gitiafroz R, Devine CE et al (2014) Metatranscriptome of an anaerobic benzene-degrading, nitrate-reducing enrichment culture reveals involvement of carboxylation in benzene ring activation. Appl Environ Microbiol 80:4095–4107PubMedPubMedCentralCrossRefGoogle Scholar
  71. MacKinnon MD (1989) Development of the tailings pond at Syncrude’s oil sands plant: 1978–1987. AOSTRA J Res 5:109–133Google Scholar
  72. Madill REA, Brownlee BG, Josephy PD, Bunce NJ (1999) Comparison of the ames Salmonella assay and mutatox genotoxicity assay for assessing the mutagenicity of polycyclic aromatic compounds in porewater from Athabasca oil sands mature fine tailings. Environ Sci Technol 33:2510–2516CrossRefGoogle Scholar
  73. Mbadinga SM, Wang L, Zhou L et al (2011) Microbial communities involved in anaerobic degradation of alkanes. Int Biodeterior Biodegrad 65:1–13CrossRefGoogle Scholar
  74. Meier J, Costa R, Smalla K, Boehrer B, Wendt-Potthoff K (2005) Temperature dependence of Fe(III) and sulfate reduction rates and its effect on growth and composition of bacterial enrichments from an acidic pit lake neutralization experiment. Geobiology 3:261–274CrossRefGoogle Scholar
  75. Misiti T, Tandukar M, Tezel U, Pavlostathis SG (2013) Inhibition and biotransformation potential of naphthenic acids under different electron accepting conditions. Water Res 47:406–418PubMedCrossRefGoogle Scholar
  76. Mohamad Shahimin MF, Siddique T (2017a) Methanogenic biodegradation of paraffinic solvent hydrocarbons in two different oil sands tailings. Sci Total Environ 583:115–122PubMedCrossRefGoogle Scholar
  77. Mohamad Shahimin MF, Siddique T (2017b) Sequential biodegradation of complex naphtha hydrocarbons under methanogenic conditions in two different oil sands tailings. Environ Pollut 221:398–406PubMedCrossRefGoogle Scholar
  78. Mohamad Shahimin MF, Foght JM, Siddique T (2016) Preferential methanogenic biodegradation of short-chain n-alkanes by microbial communities from two different oil sands tailings ponds. Sci Total Environ 553:250–257PubMedCrossRefGoogle Scholar
  79. Nealson KH, Saffarini D (1994) Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation. Annu Rev Microbiol 48:311–343PubMedCrossRefGoogle Scholar
  80. Nielsen JL, Juretschko S, Wagner M, Nielsen PH (2002) Abundance and phylogenetic affiliation of iron reducers in activated sludge as assessed by fluorescence in situ hybridization and microautoradiography. Appl Environ Microbiol 68:4629–4636PubMedPubMedCentralCrossRefGoogle Scholar
  81. Penner TJ, Foght JM (2010) Mature fine tailings from oil sands processing harbor diverse methanogenic communities. Can J Microbiol 56:459–470PubMedCrossRefGoogle Scholar
  82. Pina PS, Oliveira VA, Cruz FLS, Leão VA (2010) Kinetics of ferrous iron oxidation by Sulfobacillus thermosulfidooxidans. Biochem Eng J 51:194–197CrossRefGoogle Scholar
  83. Quagraine EK, Headley JV, Peterson HG (2005) Is biodegradation of bitumen a source of recalcitrant naphthenic acid mixtures in oil sands tailings pond waters? J Environ Sci Health Pt A 40:671–684CrossRefGoogle Scholar
  84. Rabus R, Wilkes H, Behrends A et al (2001) Anaerobic initial reaction of n-alkanes in a denitrifying bacterium: evidence for (1-methylpentyl)succinate as initial product and for involvement of an organic radical in n-hexane metabolism. J Bacteriol 183:1707–1715PubMedPubMedCentralCrossRefGoogle Scholar
  85. Ramos-Padrón E, Bordenave S, Lin S et al (2011) Carbon and sulfur cycling by microbial communities in a gypsum-treated oil sands tailings pond. Environ Sci Technol 45:439–446PubMedCrossRefGoogle Scholar
  86. Reid ML, Warren LA (2016) S reactivity of an oil sands composite tailings deposit undergoing reclamation wetland construction. J Environ Manag 166:321–329CrossRefGoogle Scholar
  87. Reid T, Boudens R, Ciborowski JJH, Weisener CG (2016) Physicochemical gradients, diffusive flux, and sediment oxygen demand within oil sands tailings materials from Alberta, Canada. Appl Geochem 75:90–99CrossRefGoogle Scholar
  88. Rochman FF, Sheremet A, Tamas I et al (2017) Benzene and naphthalene degrading bacterial communities in an oil sands tailings pond. Front Microbiol 8:1845PubMedPubMedCentralCrossRefGoogle Scholar
  89. Rogers VV, Wickstrom M, Liber K, Mackinnon MD (2002) Acute and subchronic mammalian toxicity of naphthenic acids from oil sands tailings. Toxicol Sci 66:347–355PubMedCrossRefGoogle Scholar
  90. Saidi-Mehrabad A, He Z, Tamas I et al (2013) Methanotrophic bacteria in oil sands tailings ponds of northern Alberta. ISME J 7:908–921PubMedCrossRefGoogle Scholar
  91. Salloum MJ, Dudas MJ, Fedorak PM (2002) Microbial reduction of amended sulfate in anaerobic mature fine tailings from oil sand. Waste Manag Res 20:162–171PubMedCrossRefGoogle Scholar
  92. Scott AC, MacKinnon MD, Fedorak P (2005) Naphthenic acids in Athabasca oil sands tailings waters are less biodegradable than commercial naphthenic acids. Environ Sci Technol 39:8388–8394PubMedCrossRefGoogle Scholar
  93. Siddique T, Fedorak PM, Foght JM (2006) Biodegradation of short-chain n-alkanes in oil sands tailings under methanogenic conditions. Environ Sci Technol 40:5459–5464PubMedCrossRefGoogle Scholar
  94. Siddique T, Fedorak PM, MacKinnon MD, Foght JM (2007) Metabolism of BTEX and naphtha compounds to methane in oil sands tailings. Environ Sci Technol 41:2350–2356PubMedCrossRefGoogle Scholar
  95. Siddique T, Gupta R, Fedorak PM et al (2008) A first approximation kinetic model to predict methane generation from an oil sands tailings settling basin. Chemosphere 72:1573–1580PubMedCrossRefGoogle Scholar
  96. Siddique T, Penner T, Semple K, Foght JM (2011) Anaerobic biodegradation of longer-chain n-alkanes coupled to methane production in oil sands tailings. Environ Sci Technol 45:5892–5899PubMedCrossRefGoogle Scholar
  97. Siddique T, Penner T, Klassen J, Nesbø C, Foght JM (2012) Microbial communities involved in methane production from hydrocarbons in oil sands tailings. Environ Sci Technol 46:9802–9810PubMedCrossRefGoogle Scholar
  98. Siddique T, Kuznetsov P, Kuznetsova A, Arkell N, Young R, Li C, Guigard S, Underwookd E, Foght JM (2014a) Microbially-accelerated consolidation of oil sands tailings. Pathway I: changes in porewater chemistry. Front Microbiol 5:106PubMedPubMedCentralGoogle Scholar
  99. Siddique T, Kuznetsov P, Kuznetsov A, Li C, Young R, Arocena JM, Foght JM (2014b) Microbially-accelerated consolidation of oil sand tailings. Pathway II: solid phase biogeochemistry. Front Microbiol 5:107PubMedPubMedCentralGoogle Scholar
  100. Siddique T, Mohamad Shahimin MF, Zamir S, Semple K, Li C, Foght JM (2015) Long-term incubation reveals methanogenic biodegradation of C5 and C6 iso-alkanes in oil sands tailings. Environ Sci Technol 49:14732–14739PubMedCrossRefGoogle Scholar
  101. Simpson IJ, Blake NJ, Barletta B et al (2010) Characterization of trace gases measured over Alberta oil sands mining operations: 76 speciated C2-C10 volatile organic compounds (VOCs), CO2, CH4, CO, NO, NO2, NOy, O3 and SO2. Atmos Chem Phys 10:11931–11954CrossRefGoogle Scholar
  102. Small CC, Cho S, Hashisho Z et al (2015) Emissions from oil sands tailings ponds: review of tailings pond parameters and emission estimates. J Pet Sci Eng 127:490–501CrossRefGoogle Scholar
  103. Smith BE, Lewis CA, Belt ST et al (2008) Effects of alkyl chain branching on the biotransformation of naphthenic acids. Environ Sci Technol 42:9323–9328PubMedCrossRefGoogle Scholar
  104. Sobolewski A (1997) Anaerobic microbial populations at the Syncrude lease. Consultant’s memo to Syncrude, pp 4Google Scholar
  105. Sobolewski A (1999a) Evolution of microbial populations in process-affected aquatic ecosystems. Consultant’s report to Syncrude, Edmonton, June, 49 ppGoogle Scholar
  106. Sobolewski A (1999b) Survey of anaerobic bacteria in tailings samples at the Syncrude lease. 290 Consultant’s report to Syncrude, June, 20 ppGoogle Scholar
  107. Stasik S, Wendt-Potthoff K (2014) Interaction of microbial sulphate reduction and methanogenesis in oil sands tailings ponds. Chemosphere 103:59–66PubMedCrossRefGoogle Scholar
  108. Stasik S, Wendt-Potthoff K (2016) Vertical gradients in carbon flow and methane production in a sulfate-rich oil sands tailings pond. Water Res 106:223–231PubMedCrossRefGoogle Scholar
  109. Stasik S, Loick N, Knöller K, Weisener CG, Wendt-Potthoff K (2014) Understanding biogeochemical gradients of sulfur, iron and carbon in an oil sands tailings pond. Chem Geol 382:44–53CrossRefGoogle Scholar
  110. Stasik S, Wick LY, Wendt-Potthoff K (2015) Anaerobic BTEX degradation in oil sands tailings ponds: impact of labile organic carbon and sulfate-reducing bacteria. Chemosphere 138:133–139PubMedCrossRefGoogle Scholar
  111. Straub KL, Schink B (2004) Ferrihydrite-dependent growth of Sulfurospirillum deleyianum through electron transfer via sulfur cycling. Appl Environ Microbiol 70:5744–5749PubMedPubMedCentralCrossRefGoogle Scholar
  112. Tan B, Dong X, Sensen CW, Foght JM (2013) Metagenomic analysis of an anaerobic alkane-degrading microbial culture: potential hydrocarbon-activating pathways and inferred roles of community members. Genome 56:599–511PubMedCrossRefPubMedCentralGoogle Scholar
  113. Tan B, Rozycki T, Foght JM (2014a) Draft genome sequences of three Smithella spp. obtained from a methanogenic alkane-degrading culture and oil field produced water. Genome Announc 2:e01085–e01014PubMedPubMedCentralGoogle Scholar
  114. Tan B, Charchuk R, Li C, Laban NA, Foght JM (2014b) Draft genome sequence of uncultivated firmicutes (Peptococcaceae SCADC) single cells sorted from methanogenic alkane-degrading cultures. Genome Announc 2:e00909–e00914PubMedPubMedCentralGoogle Scholar
  115. Tan B, Semple K, Foght JM (2015) Anaerobic alkane biodegradation by cultures enriched from oil sands tailings ponds involves multiple species capable of fumarate addition. FEMS Microbiol Ecol 91:fiv042PubMedCrossRefGoogle Scholar
  116. Tang J, Zhuang L, Ma J et al (2016) Secondary mineralization of ferrihydrite affects microbial methanogenesis in Geobacter-Methanosarcina cocultures. Appl Environ Microbiol 82:5869–5877PubMedPubMedCentralCrossRefGoogle Scholar
  117. Vedoy DRL, Soares JBP (2015) Water-soluble polymers for oil sands tailing treatment: a Review. Can J Chem Eng 93:888–904CrossRefGoogle Scholar
  118. von Netzer F, Pilloni G, Kleindienst S et al (2013) Enhanced gene detection assays for fumarate-adding enzymes allow uncovering of anaerobic hydrocarbon degraders in terrestrial and marine systems. Appl Environ Microbiol 79:543–552CrossRefGoogle Scholar
  119. Voordouw G (2012) Interaction of oil sands tailings particles with polymers and microbial cells: first steps toward reclamation to soil. Biopolymers 99:257–262CrossRefGoogle Scholar
  120. Wang Y, Zeng W, Qiu G et al (2014) A moderately thermophilic mixed microbial culture for bioleaching of chalcopyrite concentrate at high pulp density. Appl Environ Microbiol 80:741–750PubMedPubMedCentralCrossRefGoogle Scholar
  121. Warren LA, Kendra KE, Brady AL, Slater GF (2016) Sulfur biogeochemistry of an oil sands composite tailings deposit. Front Microbiol 6:1533PubMedPubMedCentralCrossRefGoogle Scholar
  122. Weber KA, Achenbach LA, Coates JD (2006) Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nat Rev Microbiol 4:752–764PubMedCrossRefGoogle Scholar
  123. Widdel F, Knittel K, Galushko A (2010) Anaerobic hydrocarbon-degrading microorganisms: an overview. In: Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 1997–2021CrossRefGoogle Scholar
  124. Wilson SL, Li C, Ramos-Padron E et al (2016) Oil sands tailings ponds harbour a small core prokaryotic microbiome and diverse accessory communities. J Biotechnol 235:187–196PubMedCrossRefPubMedCentralGoogle Scholar
  125. Xingyu L, Rongbo S, Bowei C et al (2009) Bacterial community structure change during pyrite bioleaching process: effect of pH and aeration. Hydrometallurgy 95:267–272CrossRefGoogle Scholar
  126. Yamada C, Kato S, Ueno Y, Ishii M, Igarashi Y (2014) Inhibitory effects of ferrihydrite on a thermophilic methanogenic community. Microbes Environ 29:227–230PubMedPubMedCentralCrossRefGoogle Scholar
  127. Yao D, Zhanga X, Wanga G et al (2017) A novel parameter for evaluating the influence of iron oxide on the methanogenic process. Biochem Eng J 125:144–150CrossRefGoogle Scholar
  128. Yue S, Ramsay BA, Ramsay JA (2015) Biodegradation of naphthenic acid surrogates by axenic cultures. Biodegradation 26:313–325PubMedCrossRefPubMedCentralGoogle Scholar
  129. Zedelius J, Rabus R, Grundmann O et al (2011) Alkane degradation under anoxic conditions by a nitrate-reducing bacterium with possible involvement of the electron acceptor in substrate activation. Environ Microbiol Rep 3:125–135PubMedPubMedCentralCrossRefGoogle Scholar
  130. Zengler K, Richnow HH, Rosselló-Mora R, Michaelis W, Widdel F (1999) Methane formation from long-chain alkanes by anaerobic microorganisms. Nature 401:266–269PubMedPubMedCentralCrossRefGoogle Scholar
  131. Zhang J, Dong H, Liu D et al (2012) Microbial reduction of Fe(III) in illite–smectite minerals by methanogen Methanosarcina mazei. Chem Geol 292-293:35–44CrossRefGoogle Scholar
  132. Zheng S, Wang B, Liu F, Wang O (2017) Magnetite production and transformation in the methanogenic consortia from coastal riverine sediments. J Microbiol 55:862–870PubMedCrossRefGoogle Scholar
  133. Zhou S, Xu J, Yang G, Zhuang L (2014) Methanogenesis affected by the co-occurrence of iron (III) oxides and humic substances. FEMS Microbiol Ecol 88:107–120PubMedCrossRefGoogle Scholar
  134. Zhu R, Liu Q, Xu Z et al (2011) Role of dissolving carbon dioxide in densification of oil sands tailings. Energy Fuel 25:2049–2057CrossRefGoogle Scholar
  135. Zhu M-Y, Peng S-C, Tao W et al (2017) Response of methane production and microbial community to the enrichment of soluble microbial products in goethite-dosed anaerobic reactors. Fuel 191:495–499CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Tariq Siddique
    • 1
    Email author
  • Sebastian Stasik
    • 2
    • 3
  • Mohd Faidz Mohamad Shahimin
    • 1
    • 4
  • Katrin Wendt-Potthoff
    • 2
  1. 1.Department of Renewable ResourcesUniversity of AlbertaEdmontonCanada
  2. 2.Department of Lake ResearchUFZ – Helmholtz Centre for Environmental ResearchMagdeburgGermany
  3. 3.Faculty of Medicine Carl Gustav CarusTechnische UniversitätDresdenGermany
  4. 4.Department of Chemical Engineering TechnologyUniversiti Malaysia PerlisPadang BesarMalaysia

Personalised recommendations