Advertisement

Biological Basis and Functional Assessment of Oral Sensation

  • Valerie B. DuffyEmail author
  • John E. Hayes
Reference work entry
  • 15 Downloads

Abstract

When we eat or drink, separate sensory systems carry taste, smell, irritation, and texture signals to the brain, where these signals are packaged into a composite flavor sensation. Each sensory system has specialized receptors that respond to a specific stimuli that can be chemical (taste, odor, irritant) or mechanical (texture) in nature. Variability in these sensory inputs can arise from genetics, environmental exposure, diseases, and aging. This variability influences the separate sensory inputs and composite flavor sensations with downstream implications for what we like and chose to eat, such as the quality of the eating experience, and our overall health. In some cases, sensory inputs can be altered or distorted (e.g., phantom sensations). Simple standardized measures are available for screening, such as in-depth assessment of separate sensory systems and integrated flavor sensations.

Notes

Acknowledgments

This work was supported by the US Department of Food and Agriculture (USDA) Hatch Project Funds (#CONS00928 and Accession #1001056, and #PEN04708 and Accession #1019852).

References

  1. Amoore, J. (1977). Specific anosmia and the concept of primary odors. Chemical Senses and Flavor, 2, 267–281.Google Scholar
  2. Bainbridge, K. E., Byrd-Clark, D., & Leopold, D. (2018). Factors associated with phantom odor perception among US adults: Findings from the National Health and Nutrition Examination Survey. JAMA Otolaryngology. Head & Neck Surgery, 144(9), 807–814.Google Scholar
  3. Bajec, M. R., & Pickering, G. J. (2008). Astringency: Mechanisms and perception. Critical Reviews in Food Science and Nutrition, 48(9), 858–875.PubMedGoogle Scholar
  4. Bartoshuk, L. M., & Klee, H. J. (2013). Better fruits and vegetables through sensory analysis. Current Biology, 23(9), R374–R378.Google Scholar
  5. Bartoshuk, L. M., Kveton, J. F., Yanagisawa, K., & Catalanotto, F. A. (1994). Taste loss and taste phantoms: A role of inhibition in taste. In K. Kurihara, N. Suzuki, & H. Ogawa (Eds.), Olfaction and taste XI (pp. 557–560). New York: Springer.Google Scholar
  6. Bartoshuk, L. M., Duffy, V. B., Green, B. G., Hoffman, H. J., Ko, C. W., Lucchina, L. A., … Weiffenbach, J. M. (2004). Valid across-group comparisons with labeled scales: The gLMS versus magnitude matching. Physiology & Behavior, 82(1), 109–114.Google Scholar
  7. Bartoshuk, L. M., Snyder, D. J., Grushka, M., Berger, A. M., Duffy, V. B., & Kveton, J. F. (2005). Taste damage: Previously unsuspected consequences. Chemical Senses, 30(Suppl 1), i218–i219.PubMedGoogle Scholar
  8. Bartoshuk, L. M., Duffy, V. B., Hayes, J. E., Moskowitz, H. R., & Snyder, D. J. (2006). Psychophysics of sweet and fat perception in obesity: Problems, solutions and new perspectives. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 361(1471), 1137–1148.PubMedPubMedCentralGoogle Scholar
  9. Behrens, M., Briand, L., de March, C. A., Matsunami, H., Yamashita, A., Meyerhof, W., & Weyand, S. (2018). Structure-function relationships of olfactory and taste receptors. Chemical Senses, 43(2), 81–87.PubMedPubMedCentralGoogle Scholar
  10. Blankenship, M. L., Grigorova, M., Katz, D. B., & Maier, J. X. (2019). Retronasal odor perception requires taste cortex, but orthonasal does not. Current Biology, 29(1), 62–69. e63.PubMedGoogle Scholar
  11. Boesveldt, S., Lindau, S. T., McClintock, M. K., Hummel, T., & Lundstrom, J. N. (2011). Gustatory and olfactory dysfunction in older adults: A national probability study. Rhinology, 49(3), 324–330.PubMedPubMedCentralGoogle Scholar
  12. Boesveldt, S., Postma, E. M., Boak, D., Welge-Luessen, A., Schopf, V., Mainland, J. D., … Duffy, V. B. (2017). Anosmia – A clinical review. Chemical Senses, 42, 513.PubMedPubMedCentralGoogle Scholar
  13. Boltong, A., Keast, R. S., & Aranda, S. K. (2011). A matter of taste: Making the distinction between taste and flavor is essential for improving management of dysgeusia. Support Care Cancer, 19(4), 441–442.PubMedGoogle Scholar
  14. Bramerson, A., Johansson, L., Ek, L., Nordin, S., & Bende, M. (2004). Prevalence of olfactory dysfunction: The Skövde population-based study. Laryngoscope, 114(4), 733–737.PubMedGoogle Scholar
  15. Brann, J. H., & Firestein, S. J. (2014). A lifetime of neurogenesis in the olfactory system. Frontiers in Neuroscience, 8, 182.PubMedPubMedCentralGoogle Scholar
  16. Breen, S. P., Etter, N. M., Ziegler, G. R., & Hayes, J. E. (2019). Oral somatosensatory acuity is related to particle size perception in chocolate. Scientific Reports, 9(1), 7437.  https://doi.org/10.1038/s41598-019-43944-7.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Bremner, E. A., Mainland, J. D., Khan, R. M., & Sobel, N. (2003). The prevalence of androstenone anosmia. Chemical Senses, 28(5), 423–432.PubMedGoogle Scholar
  18. Breslin, P. A. S., Gilmore, M. M., Beauchamp, G. K., & Green, B. G. (1993). Psychophysical evidence that oral astringency is a tactile sensation. Chemical Senses, 18(4), 405–417.Google Scholar
  19. Buck, L. B. (2005). Unraveling the sense of smell (Nobel lecture). Angewandte Chemie (International Ed. in English), 44(38), 6128–6140.Google Scholar
  20. Buck, L., & Axel, R. (1991). A novel multigene family may encode odorant receptors: A molecular basis for odor recognition. Cell, 65(1), 175–187.PubMedPubMedCentralGoogle Scholar
  21. Bull, T. R. (1965). Taste and the chorda tympani. The Journal of Laryngology and Otology, 79, 479–493.PubMedGoogle Scholar
  22. Cain, W. S., Gent, J. F., Goodspeed, R. B., & Leonard, G. (1988). Evaluation of olfactory dysfunction in the Connecticut Chemosensory Clinical Research Center. Laryngoscope, 98, 83-88.Google Scholar
  23. CDC. (2013). National Health and Nutrition Examination Survey (NHANES). 2011–2012 Data documentation, codebook, and frequencies: Taste and smell disorders [Internet]. Centers for Disease Control and Prevention (CDC), National Center for Health Statistics (NCHS). [September 2013]. Available from: http://www.cdc.gov/nchs/nhanes/nhanes2011-2012/CSQ_G.htm
  24. Centers for Disease Control and Prevention. (2013). National Health and Nutrition Examination Survey (NHANES). Retrieved from https://www.cdc.gov/nchs/data/nhanes/nhanes_13_14/Taste_Smell.pdf
  25. Coldwell, S. E., Mennella, J. A., Duffy, V. B., Pelchat, M. L., Griffith, J. W., Smutzer, G., Cowart, B. J., Breslin, P. A. S., Bartoshuk, L. M., Hastings, L., Beauchamp, G. K., O’Mahony, M. A., Victorson, D., & Hoffman, H. J. (2013). NIH Toolbox for Assessment of Neurological and Behavioral Function: Assessments for Gustation. Neurology, 12;80(11 Suppl 3), S20–4.Google Scholar
  26. Cook, D. J., Linforth, R. S., & Taylor, A. J. (2003). Effects of hydrocolloid thickeners on the perception of savory flavors. Journal of Agricultural and Food Chemistry, 51(10), 3067–3072.PubMedGoogle Scholar
  27. Coppola, D. M., & White, L. E. (2019). Forever young: Neoteny, neurogenesis and a critique of critical periods in olfaction. Journal of Bioenergetics and Biomembranes, 51(1), 53–63.PubMedGoogle Scholar
  28. Cruickshanks, K. J., Schubert, C. R., Snyder, D. J., Bartoshuk, L. M., Huang, G. H., Klein, B. E., … Moy, G. S. (2009). Measuring taste impairment in epidemiologic studies: The beaver dam offspring study. Annals of the New York Academy of Sciences, 1170, 543–552.PubMedPubMedCentralGoogle Scholar
  29. Crystal, S. R., & Bernstein, I. L. (1998). Infant salt preference and mother’s morning sickness. Appetite, 30(3), 297–307.PubMedGoogle Scholar
  30. Deems, D., Doty, R., Settle, R., Moore-Gillon, V., Shaman, P., Mester, A., … Snow, J. J. (1991). Smell and taste disorders: An analysis of 750 from the University of Pennsylvania Smell and taste Center. Arch Otolaryng Head Neck Surg, 117(5), 519–528.Google Scholar
  31. Delwiche, J. F. (2003). Attributes believed to impact flavor: An opinion survey. Journal of Sensory Studies, 18(4), 347–352.Google Scholar
  32. Doty, R., Shaman, P., & Dann, M. (1984). Development of the University of Pennsylvania smell identification test: A standardized microencapsulated test of olfactory function. Physiology & Behavior, 34, 489–502.Google Scholar
  33. Doty, R. L., Petersen, I., Mensah, N., & Christensen, K. (2011). Genetic and environmental influences on odor identification ability in the very old. Psychology and Aging, 26(4), 864–871.  https://doi.org/10.1037/a0023263.CrossRefPubMedPubMedCentralGoogle Scholar
  34. DuBois, G. E. (2016). Molecular mechanism of sweetness sensation. Physiology & Behavior, 164(Pt B), 453–463.Google Scholar
  35. Duffy, V. B., Bartoshuk, L. M., Striegel-Moore, R., & Rodin, J. (1998). Taste changes across pregnancy. Annals of the New York Academy of Sciences, 855, 805–809.PubMedGoogle Scholar
  36. Duffy, V. B., Rawal, S., Park, J., Brand, M. H., Sharafi, M., & Bolling, B. W. (2016). Characterizing and improving the sensory and hedonic responses to polyphenol-rich aronia berry juice. Appetite, 107, 116–125.  https://doi.org/10.1016/j.appet.2016.07.026.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Duffy, V. B., Glennon, S. G., Larsen, B. A., Rawal, S., Oncken, C., & Litt, M. D. (2019). Heightened olfactory dysfunction and oral irritation among chronic smokers and heightened propylthiouracil (PROP) bitterness among menthol smokers. Physiology & Behavior, 15(201), 111–122.Google Scholar
  38. Fast, K., Bartoshuk, L., Kveton, J., & Duffy, V. (2000). Unilateral anesthesia of the chorda tympani nerve suggests taste may localize retronasal olfaction. Chemical Senses, 25, 614–615 (abstract).Google Scholar
  39. Fierro, F., Giorgetti, A., Carloni, P., Meyerhof, W., & Alfonso-Prieto, M. (2019). Dual binding mode of “bitter sugars” to their human bitter taste receptor target. Scientific Reports, 9(1), 8437.PubMedPubMedCentralGoogle Scholar
  40. Filiou, R. P., Lepore, F., Bryant, B., Lundstrom, J. N., & Frasnelli, J. (2015). Perception of trigeminal mixtures. Chemical Senses, 40(1), 61–69.PubMedGoogle Scholar
  41. Fleming, E. E., Ziegler, G. R., & Hayes, J. E. (2016). Salivary protein levels as a predictor of perceived astringency in model systems and solid foods. Physiology & Behavior, 163, 56–63.Google Scholar
  42. Gill, A. S., Said, M., Tollefson, T. T., & Steele, T. O. (2019). Update on empty nose syndrome: Disease mechanisms, diagnostic tools, and treatment strategies. Current Opinion in Otolaryngology & Head and Neck Surgery, 27(4), 237–242.Google Scholar
  43. Gogolla, N. (2017). The insular cortex. Current Biology, 27(12), R580–R586.  https://doi.org/10.1016/j.cub.2017.05.010.CrossRefPubMedGoogle Scholar
  44. Green, B. (1984). Thermal perception on lingual and labial skin. Perception & Psychophysics, 36(3), 209–220.Google Scholar
  45. Green, B. G. (2016). Introduction: what is chemesthesis? In D. Bolliet, S. McDonald, & J. E. Hayes (Eds.), Chemesthesis: Chemical touch in food and eating (pp. 1–7). Hoboken, New Jersey: John Wiley & Sons, Inc.Google Scholar
  46. Guducu, C., Olcay, B. O., Schafer, L., Aziz, M., Schriever, V. A., Ozgoren, M., & Hummel, T. (2019). Separating normosmic and anosmic patients based on entropy evaluation of olfactory event-related potentials. Brain Research, 1708, 78–83.PubMedGoogle Scholar
  47. Hagura, N., Barber, H., & Haggard, P. (2013). Food vibrations: Asian spice sets lips trembling. Proceedings of the Biological Sciences, 280(1770), 20131680.Google Scholar
  48. Hayes, J. E., Wallace, M. R., Knopik, V. S., Herbstman, D. M., Bartoshuk, L. M., & Duffy, V. B. (2011). Allelic variation in TAS2R bitter receptor genes associates with variation in sensations from and ingestive behaviors toward common bitter beverages in adults. Chemical Senses, 36(3), 311–319.PubMedPubMedCentralGoogle Scholar
  49. Hayes, J. E., Allen, A. L., & Bennett, S. M. (2013). Direct comparison of the generalized Visual Analog Scale (gVAS) and general Labeled Magnitude Scale (gLMS). Food Quality and Preference, 28(1), 36–44.PubMedGoogle Scholar
  50. Heckmann, S. M., Kirchner, E., Grushka, M., Wichmann, M. G., & Hummel, T. (2012). A double-blind study on clonazepam in patients with burning mouth syndrome. Laryngoscope, 122(4), 813–816.PubMedGoogle Scholar
  51. Heydel, J. M., Coelho, A., Thiebaud, N., Legendre, A., Le Bon, A. M., Faure, P., … Briand, L. (2013). Odorant-binding proteins and xenobiotic metabolizing enzymes: Implications in olfactory perireceptor events. Anat Rec (Hoboken), 296(9), 1333–1345.PubMedGoogle Scholar
  52. Hoffman, H. J., Rawal, S., Li, C. M., & Duffy, V. B. (2016). New chemosensory component to the U.S. National Health and Nutrition Examination Survey (NHANES), first-year results for measured olfactory dysfunction. Reviews in Endocrine & Metabolic Disorders, 17(2), 221–240.Google Scholar
  53. Hollowood, T., Linforth, R., & Taylor, A. (2002). The effect of viscosity on the perception of flavour. Chemical Senses, 27, 583–591.PubMedGoogle Scholar
  54. Hubert, P., Papasavas, P., Stone, A., Swede, H., Huedo-Medina, T., Tishler, D., & Duffy, V. (2019). Associations between weight loss, food likes, dietary behaviors and chemosensory function in bariatric surgery: A case-control analysis in women. Nutrients, 11(4), 804.PubMedCentralGoogle Scholar
  55. Hudson, S. D., Sims, C. A., Odabasi, A. Z., Colquhoun, T. A., Snyder, D. J., Stamps, J. J., … Bartoshuk, L. M. (2018). Flavor alterations associated with miracle fruit and Gymnema sylvestre. Chemical Senses, 43(7), 481–488.PubMedPubMedCentralGoogle Scholar
  56. Hummel, T., Stupka, G., Haehner, A., & Poletti, S. C. (2018). Olfactory training changes electrophysiological responses at the level of the olfactory epithelium. Rhinology, 56(4), 330–335.PubMedGoogle Scholar
  57. Imamura, Y., Shinozaki, T., Okada-Ogawa, A., Noma, N., Shinoda, M., Iwata, K., … Svensson, P. (2019). An updated review on pathophysiology and management of burning mouth syndrome with endocrinological, psychological and neuropathic perspectives. Journal of Oral Rehabilitation, 46(6), 574–587.PubMedGoogle Scholar
  58. Kapaun, C. L., & Dando, R. (2017). Deconvoluting physical and chemical heat: Temperature and spiciness influence flavor differently. Physiology & Behavior, 170, 54–61.Google Scholar
  59. Keast, S. J. R., & Breslin, P. A. S. (2003). An overview of binary taste-taste interactions. Food Quality and Preference, 142(2), 111–124.Google Scholar
  60. Keller, A., Zhuang, H., Chi, Q., Vosshall, L. B., & Matsunami, H. (2007). Genetic variation in a human odorant receptor alters odour perception. Nature, 449(7161), 468–472.PubMedPubMedCentralGoogle Scholar
  61. Koskinen, K., Reichert, J. L., Hoier, S., Schachenreiter, J., Duller, S., Moissl-Eichinger, C., & Schopf, V. (2018). The nasal microbiome mirrors and potentially shapes olfactory function. Scientific Reports, 8(1), 1296.PubMedPubMedCentralGoogle Scholar
  62. Kveton, J., & Bartoshuk, L. (1994). The effect of unilateral chorda tympani damage on taste. Laryngoscope, 104(1), 25-29.Google Scholar
  63. Lawless, H., Schlake, S., Smythe, J., Lim, J., Yang, H., Chapman, K., & Bolton, B. (2004). Metallic taste and retronasal smell. Chemical Senses, 29, 25–33.PubMedGoogle Scholar
  64. Lehman, C. D., Bartoshuk, L. M., Catalanotto, F. C., Kveton, J. F., & Lowlicht, R. A. (1995). Effect of anesthesia of the chorda tympani nerve of taste perception in humans. Physiology & Behavior, 57, 943–951.Google Scholar
  65. Lehrner, J., Gluck, J., & Laska, M. (1999). Odor identification, consistency of label use, olfactory threshold and their relationship to odor memory over the human lifespan. Chemical Senses, 24, 337–346.PubMedGoogle Scholar
  66. Leshem, M. (2009). The excess salt appetite of humans is not due to sodium loss in adulthood. Physiology & Behavior, 98(3), 331–337.Google Scholar
  67. Loper, H. B., La Sala, M., Dotson, C., & Steinle, N. (2015). Taste perception, associated hormonal modulation, and nutrient intake. Nutrition Reviews, 73(2), 83–91.PubMedPubMedCentralGoogle Scholar
  68. MacCarthy-Leventhal, E. (1959). Post radiation mouth blindess. Lancet, 19, 1138–1139.Google Scholar
  69. Mainland, J. D., Keller, A., Li, Y. R., Zhou, T., Trimmer, C., Snyder, L. L., … Matsunami, H. (2014). The missense of smell: Functional variability in the human odorant receptor repertoire. Nature Neuroscience, 17(1), 114–120.PubMedPubMedCentralGoogle Scholar
  70. Malnic, B., Godfrey, P. A., & Buck, L. B. (2004). The human olfactory receptor gene family. Proceedings of the National Academy of Sciences of the United States of America, 101(8), 2584–2589.PubMedPubMedCentralGoogle Scholar
  71. Mattes, R., Cowart, B., Schiavo, M., Arnold, C., Garrison, B., Kare, M., & Lowry, L. (1990). Dietary evaluation of patients with smell and/or taste disorders. The American Journal of Clinical Nutrition, 51, 233–240.PubMedGoogle Scholar
  72. McAuliffe, W. K., & Meiselman, H. L. (1974). The roles of practice and correction in the categorization of sour and bitter taste qualities. Perception & Psychophysics, 16(2), 242–244.Google Scholar
  73. Menon, C., Westervelt, H. J., Jahn, D. R., Dressel, J. A., & O’Bryant, S. E. (2013). Normative performance on the Brief Smell Identification Test (BSIT) in a multi-ethnic bilingual cohort: A project FRONTIER study. The Clinical Neuropsychologist, 27(6), 946–961.PubMedPubMedCentralGoogle Scholar
  74. Miles, B. L., Van Simaeys, K., Whitecotton, M., & Simons, C. T. (2018). Comparative tactile sensitivity of the fingertip and apical tongue using complex and pure tactile tasks. Physiology & Behavior, 194, 515–521.Google Scholar
  75. Miller, I., & Reedy, F. (1990). Variation in human taste bud density and taste intensity perception. Physiology & Behavior, 47, 1213–1219.Google Scholar
  76. Moran, D., Jafek, B., Eller, P., & Rowley, J. d. (1992). Ultrastructural histopathology of human olfactory dysfunction. Microscopy Research and Technique, 23(2), 103–110.PubMedGoogle Scholar
  77. Murphy, C., Schubert, C., Cruickshanks, K., Klein, B., Klein, R., & Nondahl, D. (2002). Prevalence of olfactory impairment in older adults. JAMA, 288(18), 2307–2312.PubMedGoogle Scholar
  78. Murphy, C., Doty, R., & Duncan, H. J. (2003). Clinical disorders of olfaction. In R. Doty (Ed.), Handbook of olfaction and gustation (2nd ed., pp. 461–478). New York: Marcel Dekker.Google Scholar
  79. Oksanen, T., Kivimaki, M., Pentti, J., Virtanen, M., Klaukka, T., & Vahtera, J. (2010). Self-report as an indicator of incident disease. Annals of Epidemiology, 20(7), 547–554.PubMedGoogle Scholar
  80. Olender, T., Lancet, D., & Nebert, D. W. (2008). Update on the olfactory receptor (OR) gene superfamily. Human Genomics, 3(1), 87–97.PubMedPubMedCentralGoogle Scholar
  81. Oleszkiewicz, A., Park, D., Resler, K., Draf, J., Schulze, A., Zang, Y., … Hummel, T. (2019). Quality of life in patients with olfactory loss is better predicted by flavor identification than by Orthonasal olfactory function. Chemical Senses, 44(6), 371–377.PubMedGoogle Scholar
  82. Pangborn, R. M., & Pecore, S. D. (1982). Taste perception of sodium chloride in relation to dietary intake of salt. The American Journal of Clinical Nutrition, 35(3), 510–520.PubMedGoogle Scholar
  83. Pickenhagan, W. (1989). Enantioselectivity in odor perception. In R. Teranishi, R. Buttery, & F. Shahidi (Eds.), Flavor chemistry: Trends and development (pp. 151–157). Washington, DC: American Chemical Society.Google Scholar
  84. Pickering, G. J., Haverstock, G., & DiBattista, D. (2006). Evidence that sensitivity to 6-n-propylthiouracil (PROP) affects perception of retro-nasal aroma intensity. Journal of Food, Agriculture and Environment, 4(2), 15–22.Google Scholar
  85. Pinto, J. M., Wroblewski, K. E., Kern, D. W., Schumm, L. P., & McClintock, M. K. (2015). The rate of age-related olfactory decline among the general population of older U.S. adults. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 70(11), 1435–1441.PubMedPubMedCentralGoogle Scholar
  86. Poletti, S. C., Hausold, J., Herrmann, A., Witt, M., & Hummel, T. (2019). Topographical distribution of trigeminal receptor expression in the nasal cavity. Rhinology, 57(2), 147–152.PubMedGoogle Scholar
  87. Pribitkin, E., Rosenthal, M. D., & Cowart, B. J. (2003). Prevalence and causes of severe taste loss in a chemosensory clinic population. The Annals of Otology, Rhinology, and Laryngology, 112(11), 971–978.PubMedGoogle Scholar
  88. Prutkin, J. M., Duffy, V. B., Etter, L., Fast, K., Lucchina, L. A., Snyder, D. J., … Bartoshuk, L. M. (2000). Genetic variation and inferences about perceived taste intensity in mice and men. Physiology & Behavior, 61(1), 161–173.Google Scholar
  89. Rawal, S., Hoffman, H. J., Chapo, A. K., & Duffy, V. B. (2014). Sensitivity and specificity of self-reported olfactory dysfunction in a home-based study of independent-living, healthy older women. Chemosensory Perception, 7(304), 108–116.PubMedPubMedCentralGoogle Scholar
  90. Reyes, M. M., Gravina, S. A., & Hayes, J. E. (2019). Evaluation of sweetener synergy in humans by isobole analyses. Chemical Senses, 44(8), 571–582.PubMedGoogle Scholar
  91. Roberts, R. O., Christianson, T. J., Kremers, W. K., Mielke, M. M., Machulda, M. M., Vassilaki, M., … Petersen, R. C. (2016). Association between olfactory dysfunction and amnestic mild cognitive impairment and Alzheimer disease dementia. JAMA Neurology, 73(1), 93–101.PubMedPubMedCentralGoogle Scholar
  92. Roebber, J. K., Roper, S. D., & Chaudhari, N. (2019). The role of the anion in salt (NaCl) detection by mouse taste buds. The Journal of Neuroscience, 39(32), 6224–6232.PubMedPubMedCentralGoogle Scholar
  93. Rolls, E. T. (2015). Taste, olfactory, and food reward value processing in the brain. Progress in Neurobiology, 127-128, 64–90.PubMedGoogle Scholar
  94. Rumeau, C., Nguyen, D. T., & Jankowski, R. (2016). How to assess olfactory performance with the Sniffin’ sticks test((R)). European Annals of Otorhinolaryngology, Head and Neck Diseases, 133(3), 203–206.PubMedGoogle Scholar
  95. Saito, T., Ito, T., Ito, Y., Manabe, Y., & Sano, K. (2017). Relationship between gustatory function and average number of taste buds per fungiform papilla measured by confocal laser scanning microscopy in humans. European Journal of Oral Sciences, 125(1), 44–48.PubMedGoogle Scholar
  96. Schobel, N., Radtke, D., Kyereme, J., Wollmann, N., Cichy, A., Obst, K., … Hatt, H. (2014). Astringency is a trigeminal sensation that involves the activation of G protein-coupled signaling by phenolic compounds. Chemical Senses, 39(6), 471–487.PubMedGoogle Scholar
  97. Schubert, C. R., Cruickshanks, K. J., Fischer, M. E., Huang, G. H., Klein, B. E., Klein, R., … Nondahl, D. M. (2012). Olfactory impairment in an adult population: The beaver dam offspring study. Chemical Senses, 37(4), 325–334.PubMedPubMedCentralGoogle Scholar
  98. Schubert, C. R., Cruickshanks, K. J., Nondahl, D. M., Klein, B. E., Klein, R., & Fischer, M. E. (2013). Association of exercise with lower long-term risk of olfactory impairment in older adults. JAMA Otolaryngology. Head & Neck Surgery, 139(10), 1061–1066.Google Scholar
  99. Schubert, C. R., Cruickshanks, K. J., Fischer, M. E., Huang, G. H., Klein, R., Tsai, M. Y., & Pinto, A. A. (2015). Carotid intima media thickness, atherosclerosis, and 5-year decline in odor identification: The beaver dam offspring study. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 70(7), 879–884.PubMedGoogle Scholar
  100. Sipiora, M., Murtaugh, M., Gregoire, M., & Duffy, V. (2000). Bitter taste perception and severe vomiting during pregnancy. Physiology & Behavior, 69(3), 259–267.Google Scholar
  101. Snyder, D. J., & Bartoshuk, L. M. (2016). Oral sensory nerve damage: Causes and consequences. Reviews in Endocrine & Metabolic Disorders, 17(2), 149–158.Google Scholar
  102. Sollai, G., Melis, M., Pani, D., Cosseddu, P., Usai, I., Crnjar, R., … Tomassini Barbarossa, I. (2017). First objective evaluation of taste sensitivity to 6-n-propylthiouracil (PROP), a paradigm gustatory stimulus in humans. Scientific Reports, 7, 40353.Google Scholar
  103. Sollai, G., Melis, M., Magri, S., Usai, P., Hummel, T., Tomassini Barbarossa, I., & Crnjar, R. (2019). Association between the rs2590498 polymorphism of Odorant Binding Protein (OBPIIa) gene and olfactory performance in healthy subjects. Behavioural Brain Research, 372, 112030.PubMedGoogle Scholar
  104. Teng, B., Wilson, C. E., Tu, Y. H., Joshi, N. R., Kinnamon, S. C., & Liman, E. R. (2019). Cellular and neural responses to sour stimuli require the Proton Channel Otop1. Current Biology, 29, 3647. Available online, https://www.sciencedirect.com/science/article/pii/S0960982219311613.PubMedGoogle Scholar
  105. Tepper, B. J., Banni, S., Melis, M., Crnjar, R., & Tomassini Barbarossa, I. (2014). Genetic sensitivity to the bitter taste of 6-n-propylthiouracil (PROP) and its association with physiological mechanisms controlling body mass index (BMI). Nutrients, 6(9), 3363–3381.PubMedPubMedCentralGoogle Scholar
  106. Tepper, B. J., Melis, M., Koelliker, Y., Gasparini, P., Ahijevych, K. L., & Tomassini Barbarossa, I. (2017). Factors influencing the phenotypic characterization of the oral marker, PROP. Nutrients, 9(12), E1275.PubMedGoogle Scholar
  107. Trimmer, C., Keller, A., Murphy, N. R., Snyder, L. L., Willer, J. R., Nagai, M. H., … Mainland, J. D. (2019). Genetic variation across the human olfactory receptor repertoire alters odor perception. Proceedings of the National Academy of Sciences of the United States of America, 116(19), 9475–9480.Google Scholar
  108. Vandenbeuch, A., Clapp, T. R., & Kinnamon, S. C. (2008). Amiloride-sensitive channels in type I fungiform taste cells in mouse. BMC Neuroscience, 9, 1.PubMedPubMedCentralGoogle Scholar
  109. Verbeurgt, C., Wilkin, F., Tarabichi, M., Gregoire, F., Dumont, J. E., & Chatelain, P. (2014). Profiling of olfactory receptor gene expression in whole human olfactory mucosa. PLoS One, 9(5), e96333.PubMedPubMedCentralGoogle Scholar
  110. Walliczek-Dworschak, U., Schops, F., Feron, G., Brignot, H., Hahner, A., & Hummel, T. (2017). Differences in the density of fungiform papillae and composition of saliva in patients with taste disorders compared to healthy controls. Chemical Senses, 42(8), 699–708.PubMedGoogle Scholar
  111. Wang, G., Bakke, A. J., Hayes, J. E., & Hopfer, H. (2019). Demonstrating cross-modal enhancement in a real food with a modified ABX test. Food Quality and Preference, 77, 2006–2013.Google Scholar
  112. Webb, J., Bolhuis, D. P., Cicerale, S., Hayes, J. E., & Keast, R. (2015). The relationships between common measurements of taste function. Chemosensory Perception, 8(1), 11–18.PubMedPubMedCentralGoogle Scholar
  113. Welge-Lussen, A., Dorig, P., Wolfensberger, M., Krone, F., & Hummel, T. (2011). A study about the frequency of taste disorders. Journal of Neurology, 258(3), 386–392. d.PubMedGoogle Scholar
  114. White, T., & Kurtz, D. (2003). The relationship between metacognitive awareness of olfactory ability and age in people reporting chemosensory disturbances. The American Journal of Psychology, 116(1), 99–110.PubMedGoogle Scholar
  115. Wu, D., Bleier, B. S., & Wei, Y. (2018). Temporary olfactory improvement in chronic rhinosinusitis with nasal polyps after treatment. European Archives of Oto-Rhino-Laryngology, 275(9), 2193–2202.PubMedGoogle Scholar
  116. Yan, J. W., Ban, Z. J., Lu, H. Y., Li, D., Poverenov, E., Luo, Z. S., & Li, L. (2018). The aroma volatile repertoire in strawberry fruit: A review. Journal of the Science of Food and Agriculture, 98(12), 4395–4402.PubMedGoogle Scholar
  117. Yanagisawa, K., Bartoshuk, L. M., Catalanotto, F. A., Karrer, T. A., & Kveton, J. F. (1997). Anesthesia of the chorda tympani nerve and taste phantoms. Physiology & Behavior, 63(3), 329–335.Google Scholar
  118. Zhang, F., Klebansky, B., Fine, R. M., Xu, H., Pronin, A., Liu, H., … Li, X. (2008). Molecular mechanism for the umami taste synergism. Proceedings of the National Academy of Sciences of the United States of America, 105(52), 20930–20934.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Allied Health Sciences, College of Agriculture, Health and Natural ResourcesUniversity of ConnecticutStorrsUSA
  2. 2.Sensory Evaluation CenterThe Pennsylvania State UniversityUniversity ParkUSA
  3. 3.Department of Food Science, College of Agricultural SciencesThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations