Encyclopedia of Sustainability in Higher Education

2019 Edition
| Editors: Walter Leal Filho

Green Revolution and Sustainable Development

  • Noé Aguilar-RiveraEmail author
  • Christian Michel-Cuello
  • Juan Fernando Cárdenas-González
Reference work entry
DOI: https://doi.org/10.1007/978-3-030-11352-0_87


This entry reviews the technological and scientific developments generated by the Green Revolution and how their intensive and extensive implementation have been decisive factors in the sustainability of the world’s production of crops for food, feed, fiber, and biofuels. It also discusses their impact on the landscape, water resources, environment, economy, culture, socioeconomic development, and the attitude and worldview of producers in developing countries towards agrochemicals, agricultural practices, and management and monoculture productivity. To date, the Green Revolution has focused on the global issue of sustainable development by concentrating exclusively on crop production; that is, by assessing only productivity per hectare or yields derived from technological breakthroughs, improved seeds, irrigation systems, and the suitability of the land to make it viable and sustainable to cultivate a given crop in a region. However, to achieve sustainable development it is necessary to incorporate aspects such as: organic agriculture, precision agriculture tools, life cycle analysis, soil and plant health, environmental impacts, water quality, post-harvest technology, by-product uses, and peasant and farmer perceptions of new paradigms such as globalization, value chains, competitiveness, bioeconomics, biorefineries, etc. Therefore, strategies for technical advice; training; skills development; transfer and adoption of technologies and knowledge; experiences and innovations with a multi-, trans-, and interdisciplinary approach; and the participation of higher education with all actors and decision-makers are essential to achieve the transition to an evergreen revolution and sustainable development.

This is a preview of subscription content, log in to check access.


  1. Aguilar-Rivera N, de Jesús Debernardi-Vázquez T (2018) Sustainable development for farmers transforming agroindustrial wastes into profitable green products. In: Sustainable Development Research and Practice in Mexico and selected Latin American Countries. Springer, Cham, pp 53–75CrossRefGoogle Scholar
  2. Aguilar-Rivera N, Castillo-Moran A, Enríquez-Ruvalcaba V, Herrera-Solano A, Milanés-Ramos N, Rodríguez-Lagunes DA (2017) Graduate education for sustainability of sugarcane biorefineries in Mexico. In: Sustainability practice and education on University campuses and beyond, pp 72–92Google Scholar
  3. Anonymous (2016) Soil fertility: agro-ecology and not the green revolution for Africa. African Centre for Biodiversity, Johannesburg, 23pGoogle Scholar
  4. Arias-Verdes JA, Rojas-Camponioni D, Dierkmeier-Corcuela G, Riera-Betancourt C, Cabrera-Cruz N (1990) Organochlorinated Pesticides Surveillance Series 9. Pan American Center for Human Ecology and Health, Pan American Health Organization, World Health Organization, México, 91pGoogle Scholar
  5. Bandara JMRS, Wijewardena HVP, Liyanege J, Upul MA, Bandara JMUA (2010) Chronic renal failure in Sri Lanka caused by elevated dietary cadmium: Trojan horse of the green revolution. Toxicol Lett 198(1):33–39CrossRefGoogle Scholar
  6. Baranski MR (2015) Wide adaptation of Green Revolution wheat: International roots and the Indian context of a new plant breeding ideal, 1960–1970. Stud Hist Philos Sci Part C 50:41–50CrossRefGoogle Scholar
  7. Batie SS (1989) Sustainable development: challenges to the profession of agricultural economics. Am J Agric Econ 71(5):1083–1101CrossRefGoogle Scholar
  8. Borges CD, Carvalho JLN, Kölln OT, Sanches GM, Silva MJ, Castro SG, … Vargas VP (2019) Can alternative N-fertilization methods influence GHG emissions and biomass production in sugarcane fields? Biomass Bioenergy 120:21–27Google Scholar
  9. Bradstreet RB (1965) The Kjeldahl method for organic nitrogen. Academic, London/New YorkGoogle Scholar
  10. Brainerd E, Menon N (2014) Seasonal effects of water quality: the hidden costs of the Green Revolution to infant and child health in India. J Dev Econ 107:49–64CrossRefGoogle Scholar
  11. Briggs SA, Rachel Carson Council (1992) Basic guide to pesticides. Their characteristics and hazards. Taylor & Francis Publishers, Washington, DC. 283 ppGoogle Scholar
  12. Cardoso TF, Watanabe MD, Souza A, Chagas MF, Cavalett O, Morais ER, … Bonomi A (2018) Economic, environmental, and social impacts of different sugarcane production systems. Biofuels Bioprod Biorefin 12(1):68–82Google Scholar
  13. Carvalho JLN, Nogueirol RC, Menandro LMS, Bordonal RDO, Borges CD, Cantarella H, Franco HCJ (2017) Agronomic and environmental implications of sugarcane straw removal: a major review. GCB Bioenergy 9(7):1181–1195CrossRefGoogle Scholar
  14. Cassman KG, Grassini P (2013) Can there be a green revolution in Sub-Saharan Africa without large expansion of irrigated crop production? Glob Food Sec 2(3):203–209CrossRefGoogle Scholar
  15. Dawson N, Martin A, Sikor T (2016) Green revolution in sub-Saharan Africa: implications of imposed innovation for the wellbeing of rural smallholders. World Dev 78:204–218CrossRefGoogle Scholar
  16. Evenson R (1974) The “green revolution” in recent development experience. Am J Agric Econ 56(2):387–394CrossRefGoogle Scholar
  17. FAO (2011) The State of the World’s Land and Water Resources for Food and Agriculture (SOLAW). Managing systems at risk. Food and Agriculture Organization of the United Nations, Rome and Earthscan, London. http://www.fao.org/3/i1688e/i1688e00.htm
  18. FAO (2017) FAOSTAT. Available in: http://www.fao.org/faostat/en/#data. Accessed 21 Nov 2017
  19. Flores-Jiménez DE, Algara-Siller M, Aguilar-Rivera N, Carbajal N, Aldama-Aguilera C, Ávila-Galarza A, Álvarez-Fuentes G (2016) Influence of sugarcane burning on soil carbon and nitrogen release under drought and evapotranspiration conditions in a Mexican sugarcane supply zone. Revista Internacional de Contaminación Ambiental 32(2):177–189CrossRefGoogle Scholar
  20. Frankema E (2014) Africa and the green revolution a global historical perspective. NJAS-Wageningen J Life Sci 70:17–24CrossRefGoogle Scholar
  21. Frey M, Sabbatino A (2018) The role of the private sector in global sustainable development: the UN 2030 Agenda. In: Corporate responsibility and digital communities. Palgrave Macmillan, Cham, pp 187–204CrossRefGoogle Scholar
  22. Gómez Juárez IA, Sánchez Ferrer ME (2010) Containers system, an option to reduce strange matter in the sugarcane mechanized elk. Revista Ciencias Técnicas Agropecuarias 19(1):63–69Google Scholar
  23. Hardin LS (2008) Meetings that changed the world: Bellagio 1969: the green revolution. Nature 455(7212):470–471CrossRefGoogle Scholar
  24. Headey DD, Hoddinott J (2016) Agriculture, nutrition and the green revolution in Bangladesh. Agric Syst 149:122–131CrossRefGoogle Scholar
  25. Henao S, Finkelman J, Koning HW (1993) Pesticides and health in the Americas. Organización Panamericana de la Salud (OPS), Washington, DC. 110pGoogle Scholar
  26. Herrera-Solano A, Milanés-Ramos N, Ordóñez-Barahona P, Castillo-Morán A, Enríquez-Ruvalcaba V, Heredia-Espejo C (2011) Raw material cleaner at Ingenio San Miguelito containers with the use of the crop of sugar cane (Saccharum spp.). Cultivos Tropicales 32:49–53Google Scholar
  27. König A (2015) Changing requisites to universities in the 21st century: organizing for transformative sustainability science for systemic change. Curr Opin Environ Sustain 16:105–111CrossRefGoogle Scholar
  28. Kumar MR (2009) Norman Borlaug and Green Revolution. Conference paper. Agric Today 55–57Google Scholar
  29. Kuyper TW, Struik PC (2014) Epilogue: global food security, rhetoric, and the sustainable intensification debate. Curr Opin Environ Sustain 8:71–79CrossRefGoogle Scholar
  30. Lampman W (1995) Susceptibility of groundwater to pesticide and nitrate contamination in predisposed areas of southwestern Ontario. Water Qual Res Jour Canada 30:443–468CrossRefGoogle Scholar
  31. Melillo ED (2012) The First Green Revolution: Debt Peonage and the Making of the Nitrogen Fertilizer Trade, 1840–1930. Am Hist Rev 117(4):1028–1060CrossRefGoogle Scholar
  32. Mugica-Álvarez V, Hernández-Rosas F, Magaña-Reyes M, Herrera-Murillo J, Santiago-De La Rosa N, Gutiérrez-Arzaluz M, … González-Cardoso G (2018) Sugarcane burning emissions: Characterization and emission factors. Atmos Environ 193:262–272Google Scholar
  33. Nin-Pratt A, McBride L (2014) Agricultural intensification in Ghana: Evaluating the optimist’s case for a Green Revolution. Food Policy 48:153–167CrossRefGoogle Scholar
  34. Norma Oficial Mexicana NOM-021-RECNAT-2000 que establece las especificaciones de fertilidad, salinidad y clasificación de suelos. Estudios, muestreo y análisisGoogle Scholar
  35. Oka IN (1991) Success and challenges of the Indonesian national integrated pest management program in the rice-based cropping system. Crop Prot 10:163–165CrossRefGoogle Scholar
  36. Olmstead AL, Rhode PW (2008) Creating abundance: biological innovation and American Agricultural Development. Cambridge University Press, New York. 480pGoogle Scholar
  37. Orta-Arrazcaeta L (2002) Water contamination by chemical pesticides. Fitosanidad 6(3):55–62Google Scholar
  38. Patel R (2013) The long green revolution. J Peasant Stud 40(1):1–63CrossRefGoogle Scholar
  39. Pimentel D (1996) Green revolution agriculture and chemical hazards. Sci Total Environ 188:S86–S98CrossRefGoogle Scholar
  40. Pimentel D, Acquay H, Biltonen M, Rice P, Silva M, Nelson J, … D’amore M (1992) Environmental and economic costs of pesticide use. Bioscience 42(10):750–760Google Scholar
  41. Pretty J (2018) Global assessment of agricultural system redesign for sustainable intensification. Nature Sustainability 1:441–446CrossRefGoogle Scholar
  42. Pretty J, Bharucha ZP (2014) Sustainable intensification in agricultural systems. Ann Bot 114(8):1571–1596CrossRefGoogle Scholar
  43. Ramírez JA, Lacasaña M (2001) Pesticides: classification, use, toxicological aspects and exposure assessment. Arch Prev Riesgos Labor 4(2):67–75Google Scholar
  44. Rockström J, Williams J, Daily G, Noble A, Matthews N, Gordon L, … de Fraiture C (2017) Sustainable intensification of agriculture for human prosperity and global sustainability. Ambio 46(1):4–17Google Scholar
  45. Sebby K (2010) The green revolution of the 1960’s and its impact on small farmers in India. Undergraduate Thesis. Faculty of Environmental Studies. University of Nebraska-Lincoln, Lincoln. 32p. http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1027&context=envstudthesesGoogle Scholar
  46. SIAP (2018) Cifras finales de la producción de caña y azúcar en los ingenios azucareros de México, zafra 2016/17. https://conadesuca.maps.arcgis.com/apps/webappviewer/index.html?id=45a9af005e7e4375817f10696e574c7f.
  47. Sindhu R, Gnansounou E, Binod P, Pandey A (2016) Bioconversion of sugarcane crop residue for value added products–An overview. Renew Energy 98:203–215CrossRefGoogle Scholar
  48. Singh B (1993) Pesticide residues in the environment: a case study of Punjab. In: Sengupta S (ed) Green revolution impact on health and environment, pp 21–28Google Scholar
  49. Singh RB (2000) Environmental consequences of agricultural development: a case study from the Green Revolution state of Haryana, India. Agric Ecosyst Environ 82(1):97–103CrossRefGoogle Scholar
  50. Sonnenfeld DA (1992) Mexico’s “Green Revolution,” 1940–1980: towards an environmental history. Environ Hist Rev 16(4):29–52Google Scholar
  51. Struik PC, Kuyper TW (2017) Sustainable intensification in agriculture: the richer shade of green. A review. Agron Sustain Dev 37(5):39CrossRefGoogle Scholar
  52. Van Pham L, Smith C (2014) Drivers of agricultural sustainability in developing countries: a review. Environ Syst Decis 34(2):326–341CrossRefGoogle Scholar
  53. Vieira FR, de Andrade MCN (2016) Optimization of substrate preparation for oyster mushroom (Pleurotus ostreatus) cultivation by studying different raw materials and substrate preparation conditions (composting: phases I and II). World J Microbiol Biotechnol 32(11):190CrossRefGoogle Scholar
  54. Vroumsia T, Steiman R, Seigle-Murandi F, Benoit-Guyod JL (2005) Fungal bioconversion of 2, 4-dichlorophenoxyacetic acid (2, 4-D) and 2, 4-dichlorophenol (2, 4-DCP). Chemosphere 60(10):1471–1480CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Noé Aguilar-Rivera
    • 1
    Email author
  • Christian Michel-Cuello
    • 2
  • Juan Fernando Cárdenas-González
    • 2
  1. 1.Facultad de Ciencias Biológicas y AgropecuariasUniversidad VeracruzanaVeracruzMexico
  2. 2.Universidad Autónoma de San Luis PotosíUnidad Académica Multidisciplinaria Unidad Zona MediaSan Luis PotosíMexico

Section editors and affiliations

  • Noor Adelyna Mohammed Akib
    • 1
  • Tehmina Khan
    • 2
  1. 1.Universiti Sains MalaysiaPenangMalaysia
  2. 2.School of AccountingRMIT UniversityMelbourneAustralia