Encyclopedia of Sustainability in Higher Education

2019 Edition
| Editors: Walter Leal Filho

Greenhouse Gas Management and Sustainable Development

Municipal Solid Waste and Climate Change: Engaging Cities Through Composting Techniques
  • Rafael de Almeida Lizzio
  • Estevão Brasil Ruas Vernalha
  • João Luiz de Moraes HoefelEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-030-11352-0_376

Definition

Generation and destination of solid waste in cities has caused worldwide diverse socioenvironmental problems, among them the emission of greenhouse gases (GHG) resulting from the decomposition of the organic fraction of this waste, which can collaborate in a significant way to climate change. In this scenario, organic waste composting may be an important alternative for techniques that seek to reduce greenhouse gases emissions, thus helping to achieve the goals of sustainable development.

Introduction

The generation and inadequate management of municipal solid waste (MSW) has become a major environmental problem faced in contemporary times, due to the large volumes generated daily in local, regional, and global scale. The economic model and production in which society is guided, responsible for excessive consumption, the production that generates various wastes, through the planned obsolescence of goods and by the impulsive consumption habit, directly results in excessive...

This is a preview of subscription content, log in to check access.

References

  1. Atibaia (2015) Plano Municipal de Gestão Integrada de Resíduos Sólidos Atibaia – SP 2014/2015. http://arquivos.ambiente.sp.gov.br/cpla/2017/05/atibaia.pdf. Accessed 02 Jan 2018
  2. Barbosa RV (2011) A questão dos resíduos sólidos urbanos em Caraguatatuba, Litoral Norte Paulista: Uma abordagem energética e ambiental. Dissertação de mestrado, Universidade Estadual de Campinas – Uincamp. http://repositorio.unicamp.br/bitstream/REPOSIP/264599/1/Barbosa_RebecaVeiga_M.pdf. Accessed 12 Jan 2018
  3. Bogner JM et al (2007) Waste management. In: Metz B et al (eds) Climate change 2007: mitigation. Contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK/New York, pp 585–618Google Scholar
  4. CETESB-Companhia Ambiental do Estado de São Paulo (2008) 1o Inventário de Emissões Antrópicas de Gases de Efeito Estufa Diretos e Indiretos do Estado de São Paulo. http://cetesb.sp.gov.br/inventario-gee-sp/wp-content/uploads/sites/34/2014/01/Sumario-Executivo.pdf. Accessed 05 Feb 2018
  5. EMBRAPA-Empresa Brasileira de Pesquisa Agropecuária (2010) O papel da compostagem de resíduos orgânicos urbanos na mitigação de emissões de metano. Rio de Janeiro. https://ainfo.cnptia.embrapa.br/digital/bitstream/item/35983/1/documentos-127.pdf. Accessed 20 Feb 2018
  6. EPA-Environmental Protection Agency (2018) Atmospheric lifetime and global warming potential defined. https://www.epa.gov/climateleadership/atmospheric-lifetime-and-global-warming-potential-defined. Accessed 12 Jan 2018
  7. Hall JW et al (2009) Engineering cities: how can cities grow whilst reducing emissions and vulnerability? Newcastle University, NewcastleGoogle Scholar
  8. IBGE-Instituto Brasileiro de Geografia e Estatísticas (2017) Conheça Cidades e Estados do Brasil. https://cidades.ibge.gov.br. Accessed 10 Feb 2018
  9. ICLEI-Governos Locais pela Sustentabilidade (2009) Manual para aproveitamento do biogás, vol 1. Aterros Saninários, ICLEI, São Paulo. http://www.resol.com.br/cartilha12/manual_iclei_brazil.pdf. Accessed 13 Jan 2018Google Scholar
  10. Intergovernmental Panel on Climate Change (2016) Sixth assessment report (AR6) products, outline of the methodology report (s) to refine the 2006 guidelines for national greenhouse gas inventories. https://www.ipcc.ch/meetings/session44/l3_adopted_outline_methodology_report_guideline.pdf. Accessed 15 Feb 2018
  11. Marengo JA (2007) Mudanças Climáticas Globais e seus Efeitos sobre a Biodiversidade. Brasiília. http://www.mma.gov.br/estruturas/chm/_arquivos/14_2_bio_Parte%201.pdf. Accessed 17 Jan 2018
  12. Mendes LGG, Sobrinho PM (2005) Métodos de estimativa de geração de biogás em aterro sanitário. Rev ciênc Exatas 11(2):71–76. http://revistas.unitau.br/ojs-2.2/index.php/exatas/article/viewFile/358/480. Accessed 7 Feb 2018Google Scholar
  13. Otto HR, Lopes JCJ (2017) Estimativa das emissões de ch4 em aterro sanitário: o caso do aterro Sanitário de municipal de campo grande – MS. In: Anais do 8° Congresso de Gestão Ambiental, Universidade Católica Dom Bosco, Campo Grande, 27–30 November 2017Google Scholar
  14. São Paulo (State) (2009) Lei n 13.798, de 9 de novembro de 2009. Institui a Política Estadual de Mudanças Climáticas – PEMC. São Paulo, Diário Oficial do Estado de São PauloGoogle Scholar
  15. Themelis NJ, Ulloa PA (2007) Methane generation in landfills. Renew Energy 32(7):1243–1257CrossRefGoogle Scholar
  16. United Nations (2018) Transforming our world: the 2030 Agenda for Sustainable Development. https://sustainabledevelopment.un.org/post2015/transformingourworld. Accessed 06 Jan 2018

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Rafael de Almeida Lizzio
    • 1
  • Estevão Brasil Ruas Vernalha
    • 2
  • João Luiz de Moraes Hoefel
    • 2
    Email author
  1. 1.Centro Universitário UNIFAATNúcleo de Estudos em Sustentabilidade e Cultura – NESC/CEPEAtibaiaBrazil
  2. 2.Núcleo de Estudos em Sustentabilidade e Cultura – NESC/CEPE, Centro Universitário UNIFAATAtibaiaBrazil

Section editors and affiliations

  • Petra Molthan-Hill
    • 1
  1. 1.Nottingham Trent UniversityNottinghamUK