Advertisement

In Vitro Systems of Selected Eryngium Species (E. planum, E. campestre, E. maritimum, and E. alpinum) for Studying Production of Desired Secondary Metabolites (Phenolic Acids, Flavonoids, Triterpenoid Saponins, and Essential Oil)

  • Małgorzata Kikowska
  • Barbara ThiemEmail author
Living reference work entry

Latest version View entry history

  • 6 Downloads
Part of the Reference Series in Phytochemistry book series (RSP)

Abstract

There are four Eryngium species native to Poland, namely, E. planum and E. campestre – rare taxa, E. maritimum and E. alpinum – endangered and protected taxa belonging to the subfamily Saniculoideae of Apiaceae family. The phytochemical investigations revealed the presence of various groups of bioactive compounds, that is, triterpenoid saponins, phenolic acids, flavonoids, coumarin derivatives, the essential oil, polyacetylenes, phytosterols, and ecdysteroids. Plant in vitro cultures of those rare and endangered species as well as biotechnological methods of application may provide biomass with the enhanced accumulation of desired secondary metabolites without collecting plants from natural sites. Protocols of micropropagation with genome size stability confirmation and different types of cultures – organ, callus, and cell suspension cultures – were developed with the intent to achieve constant, uniform, and renewable biomass with the higher accumulation of polyphenols and triterpenoid saponins. Both soil-grown plants and in vitro systems were analyzed for the presence and content of main secondary metabolites. It was shown that in vitro-derived plantlets also showed biological activities. The phytochemical and biological studies of Eryngium species show their potential as valuable medicinal plants.

Keywords

Eryngium planum E. campestre E. maritimum E. alpinum Micropropagation In vitro cultures Secondary metabolites Biological activities 

Abbreviations

2,4-D

2,4-Dichlorophenoxyacetic acid

ABTS

2,2′-Azinobis-3-ethylbenzotiazo-line-6-sulfonic acid

AChE

Acetylcholinesterase

BAP

Benzylaminpurine

BuChE

Butyrylcholinesterase

CA

Caffeic acid

CGA

Chlorogenic acid

DPPH

2,2-Diphenyl-1-picrylhydrazyl

DW

Dry weight

EC50

Half maximal effective concentration

ES1

3-O-β-d-Glucopyranosyl-(1→2)-β-d-glucuronopyranosyl-21-O-acetyl,22-O-angeloyl-R1-barrigenol

ES2

3-O-β-d-Glucopyranosyl-(1→2)-β-d-glucuronopyranosyl-22-O-angeloyl-R1-barrigenol

ES3

3-O-β-d-Glucopyranosyl-(1→2)-β-d-glucuronopyranosyl-22-O-angeloyl-A1-barrigenol

GA3

Gibberellic acid

GC

Gas chromatography

GC-FID-MS

Gas chromatography-flame ionization-mass spectrometer

GC-MS

Gas chromatography-mass spectrometer

HPLC

High performance liquid chromatography

HPLC-DAD

High performance liquid chromatography – diode-array detector

IAA

Indole-3-acetic acid

IBA

Indole-3-butyric acid

IC50

Half maximal inhibitory concentration

KIN

Kinetin

LC-MS

Liquid chromatography-mass spectrometer

MeJa

Methyl jasmonate

MIC

Minimal inhibitory concentration

MS

Murashige and Skoog medium

NAA

Naphthaleneacetic acid

NMR

Nuclear magnetic resonance

RA

Rosmarinic acid

TAC

Total antioxidant capacity

TBA

Thiobarbituric acid

UHPLC

Ultra-high performance liquid chromatography

References

  1. 1.
    Wang P, Su Z, Yuan W, Deng G, Li S (2012) Phytochemical constituents and pharmacological activities of Eryngium L. (Apiaceae). Pharm Crops 3:99–120.  https://doi.org/10.2174/2210290601203010099CrossRefGoogle Scholar
  2. 2.
    Erdem SA, Nabavi SF, Orhan IE, Daglia M, Izadi M, Nabavi SM (2015) Blessings in disguise: a review of phytochemical composition and antimicrobial activity of plants belonging to the genus Eryngium. DARU J Pharm Sci 23(1):23–53.  https://doi.org/10.1186/s40199-015-0136-3CrossRefGoogle Scholar
  3. 3.
    Wolff H (1913) Umbelliferae-Saniculoideae. In: Engler A (ed) Das Pflanzenreich, vol 4 (228). Engelmann, LeipzigGoogle Scholar
  4. 4.
    Wörz A (2005) A new subgeneric classification of the genus Eryngium L. (Apiaceae, Saniculoideae). Bot Jahrb Syst 126(2):253–259.  https://doi.org/10.1127/0006-8152/2005/0126-0253CrossRefGoogle Scholar
  5. 5.
    Wörz A, Diekmann H (2010) Classification and evolution of the genus Eryngium L. (Apiaceae-Saniculoideae): results of fruit anatomical and petal morphological studies. Plant Divers Evol 128(3–4):387–408.  https://doi.org/10.1127/1869-6zzzzj5/2010/0128-0018CrossRefGoogle Scholar
  6. 6.
    Calviňo CI, Martinez SG, Downie SR (2008) The evolutionary history of Eryngium (Apiaceae, Saniculoideae): rapid radiations, long distance dispersals, and hybridizations. Mol Phylogenet Evol 46:1129–1150.  https://doi.org/10.1016/j.ymper.2007.10.021PubMedCrossRefGoogle Scholar
  7. 7.
    Necajeva J, Ievinsh G (2013) Seed dormancy and germination of an endangered coastal plant Eryngium maritimum (Apiaceae). Est J Ecol 62(2):150–161.  https://doi.org/10.3176/eco.2013.2CrossRefGoogle Scholar
  8. 8.
    Gaudeul M, Taberlet P, Till-Bottraud I (2000) Genetic diversity in an endangered alpine plant Eryngium alpinum L. (Apiaceae) inferred from amplified fragment length polymorphism markers. Mol Ecol 9:1625–1637.  https://doi.org/10.1046/j.1365-294x.2000.01063.xPubMedCrossRefGoogle Scholar
  9. 9.
    Gaudeul M, Till-Bottraud I (2004) Reproductive ecology of the endangered alpine species Eryngium alpinum L. (Apiaceae): phenology, gene dispersal and reproductive success. Ann Bot 93(6):711–721PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Gygax A, Bernhardt KG, Jogan N, Montagnani C, Gigot G (2013) Eryngium alpinum. In: The IUCN Red List of Threatened species. Version 2014.3Google Scholar
  11. 11.
    Rybczyński JJ, Mikuła A (2006) Engagement of biotechnology in the protection of threatened plant species in Poland. Biodivers Res Conserv 3–4:361–368Google Scholar
  12. 12.
    Ibrahim MA, Na MK, Oh J, Schinazi RF, McBrayer TR, Whitaker T, Doerksen RJ, Newman DJ, Zachos LG, Hamann MT (2013) Significance of endangered and threatened plant natural products in the control of human disease. Proc Natl Acad Sci USA 110(42): 16832–16837.  https://doi.org/10.1073/pnas.1311528110PubMedCrossRefGoogle Scholar
  13. 13.
    Garal S (2014) Triterpenoid saponins. Nat Prod Chem Res 2(6):1–13.  https://doi.org/10.4172/2329-6838.1000148CrossRefGoogle Scholar
  14. 14.
    Hiller K, Keipert M, Pfeifer S, Kraft R (1974) The leaf sapogenin spectrum in Eryngium planum L. 20. Contribution on the content of several Saniculoideae. Pharmazie 29(1):54–57PubMedGoogle Scholar
  15. 15.
    Voigt G, Thiel P, Hiller K, Franke P, Habisch D (1985) Zur struktur des hauptsaponins der Wurzeln von Eryngium planum L. XL: Zur Kenntnis der inhaltsstoffe einger Saniculoideae. Pharmazie 40(9):656–659Google Scholar
  16. 16.
    Hiller K, von Mach B, Franke P (1976) Saponins of Eryngium maritimum L. 25. Contents of various Saniculoideae. Pharmazie 31(1):53PubMedGoogle Scholar
  17. 17.
    Kikowska M (2014) In vitro cultures of Polish Eryngium L. species – micropropagation, organ cultures, phytochemical investigation and biological activity. Doctoral thesis, Faculty of Pharmacy, Poznan University of Medical SciencesGoogle Scholar
  18. 18.
    Kowalczyk M, Masullo M, Thiem B, Piacente S, Stochmal A, Oleszek W (2014) Three new triterpene saponins from roots of Eryngium planum. Nat Prod Res 28(9):653–660.  https://doi.org/10.1080/14786419.2014.895722PubMedCrossRefGoogle Scholar
  19. 19.
    Kikowska M, Kowalczyk M, Stochmal A, Thiem B (2019) Enhanced accumulation of triterpenoid saponins in in vitro plantlets and dedifferentiated cultures of Eryngium planum L.: a medicinal plant. Hortic Environ Biotechnol 60(1):147–154.  https://doi.org/10.1007/s13580-018-0103-2CrossRefGoogle Scholar
  20. 20.
    Kartal M, Mitaine-Offer AC, Abu-Asaker M, Miyamoto T, Calis I, Wagner H, Lacaille-Dubois MA (2005) Two new triterpene saponins from Eryngium campestre. Chem Pharm Bull 53(10):1318–1320.  https://doi.org/10.1248/cpb.53.1318PubMedCrossRefGoogle Scholar
  21. 21.
    Kartal M, Mitaine-Offer AC, Paululat T, Abu-Asaker M, Wagner H, Mirjolet JF, Guilbaud N, Lacaille-Dubois MA (2006) Triterpene saponins from Eryngium campestre. J Nat Prod 69(7):1105–1108.  https://doi.org/10.1021/npD60101wPubMedCrossRefGoogle Scholar
  22. 22.
    Ghasemzadeh A, Ghasemzadeh N (2011) Flavonoids and phenolic acids: role and biochemical activity in plants and human. J Med Plant Res 5(31):6697–6703.  https://doi.org/10.5897/JMPR11.1404CrossRefGoogle Scholar
  23. 23.
    Le Claire E, Schwaiger S, Banaigs B, Stuppner H, Gafner F (2005) Distribution of a new rosmarinic acid derivative in Eryngium alpinum L. and other Apiaceae. J Agric Food Chem 53:4367–4372.  https://doi.org/10.1021/jf050024vPubMedCrossRefGoogle Scholar
  24. 24.
    Thiem B, Kikowska M, Krawczyk A, Więckowska B, Sliwińska E (2013) Phenolic acid and DNA contents of micropropagated Eryngium planum L. Plant Cell Tissue Organ Cult 114(2):197–206.  https://doi.org/10.1007/s11240-013-0315-1CrossRefGoogle Scholar
  25. 25.
    Kikowska M, Thiem B, Sliwinska E, Rewers M, Kowalczyk M, Stochmal A, Oleszek W (2014) The effect of nutritional factors and plant growth regulators on micropropagation and production of phenolic acids and saponins from plantlets and adventitious root cultures of Eryngium maritimum L. J Plant Growth Regul 33(4):809–819.  https://doi.org/10.1007/s00344-014-9428-yCrossRefGoogle Scholar
  26. 26.
    Kikowska M, Thiem B, Sliwinska E, Rewers M, Kowalczyk M, Stochmal A, Długaszewska J (2016) Micropropagation of Eryngium campestre L. via shoot culture provides valuable uniform plant material with enhanced content of phenolic acids and antimicrobial activity. Acta Biol Cracov Ser Bot 58(1):43–56.  https://doi.org/10.1515/abcsb-2016-0009CrossRefGoogle Scholar
  27. 27.
    Kikowska M, Thiem B, Szopa A, Klimek-Szczykułowicz M, Rewers M, Sliwinska E, Ekiert H (2019) Comparative analysis of phenolic acids and flavonoids in shoot cultures of Eryngium alpinum L.– an endangered and protected species with medicinal value. Plant Cell Tissue Organ Cult 139(1):167–175.  https://doi.org/10.1007/s11240-019-01674-8CrossRefGoogle Scholar
  28. 28.
    Conea S, Vlase L, Chirila I (2016) Comparative study on the polyphenols and pectin of three Eryngium species and their antimicrobial activity. Cellulose Chem Technol 50(3–4):473–481Google Scholar
  29. 29.
    Brodowska KM (2017) Natural flavonoids: classification, potential role, and application of flavonoid analogues. Eur J Biol Res 7(2):108–123Google Scholar
  30. 30.
    Hiller K, Otto A, Grundemann E (1980) Isolation of kaempferol-3-O-(6-O-β-d-glucopyranosyl)-β-d-galactopyranoside, a new flavonol glycoside from Eryngium planum L. 34. On the knowledge of the constituents of some Saniculoideae. Pharmazie 35(2):113–114Google Scholar
  31. 31.
    Leokadia SP (1983) Kaempferol 3,7-dirhamnoside from Eryngium planum L. Z Chemie 23(8):294–295Google Scholar
  32. 32.
    Kartnig T, Wolf J (1993) Flavonoids from the aboveground parts of Eryngium campestre. Planta Med 59(3):285.  https://doi.org/10.1055/s-2006-959676PubMedCrossRefGoogle Scholar
  33. 33.
    Hohmann J, Pall Z, Günter G, Máthé I (1997) Flavonolacyl glycosides of the aerial parts of Eryngium campestre. Planta Med 63(1):96.  https://doi.org/10.1055/s-2006-957620PubMedCrossRefGoogle Scholar
  34. 34.
    Hawas UW, Abou El-Kassem LT, Awad HM, Taie HAA (2013) Anti-Alzheimer, antioxidant activities and flavonol glycosides of Eryngium campestre L. Curr Chem Biol 7(2):188–195.  https://doi.org/10.2174/2212796811307020010CrossRefGoogle Scholar
  35. 35.
    Hiller K, Pohl B, Franke P (1981) Flavonoid spectrum of Eryngium maritimum L. Part 35. Components of Saniculoideae. Pharmazie 36(6):451–452Google Scholar
  36. 36.
    Bakkali F, Averback S, Averback D, Idaomar M (2008) Biological effects of essential oils – a review. Food Chem Toxicol 46:446–475.  https://doi.org/10.1016/j.fct.2007.09.106PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Thiem B, Kikowska M, Kurowska A, Kalemba D (2011) Essential oil composition of the different parts and in vitro shoot cultures of Eryngium planum L. Molecules 16(8):7115–7124.  https://doi.org/10.3390/molecules16087115PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Ayoub N, Kubeczka KH (2001) Composition of essential oils from Eryngium amethystinum, E. alpinum and E. planum (Apiaceae). In: 32nd international symposium on essential oils, September 9–12, Wrocław (ISEO) 2001, p 95Google Scholar
  39. 39.
    Korbel E, Bighelli A, Kurowska A, Kalemba D, Casanova J (2008) New cis-chryzanthenyl esters from Eryngium planum L. Nat Prod Commun 3(2):113–116.  https://doi.org/10.1177/1934578X08000300201CrossRefGoogle Scholar
  40. 40.
    Kubeczka KH, Ayoub N, Nawwar M, Saleh M (1999) The essential oil and polyacetylenes from Eryngium campestre L. (Apiaceae). In: 30th international symposium on essential oils (30th ISEO) 05–08.IX. 1999, Leipzig–Miltitz, p 105Google Scholar
  41. 41.
    Palá-Paúl J, Usano-Alemany J, Soria AC, Pérez-Alonso MJ, Brophy JJ (2008) Essential oil composition of Eryngium campestre L. growing in different soil types. A preliminary study. Nat Prod Commun 3(7):1121–1126.  https://doi.org/10.1177/1934578X0800300716CrossRefGoogle Scholar
  42. 42.
    Brophy JJ, Goldsack RJ, Copeland LM, Pala-Paul J (2003) Essential oil of Eryngium L. species from New South Wales (Australia). J Essent Oil Res 15:392–397CrossRefGoogle Scholar
  43. 43.
    Darriet F, Bendahou M, Desjobert J-M, Costa J, Muselli A (2012) Bicyclo[4.4.0]decane oxygenated sesquiterpenes from Eryngium maritimum essential oil. Planta Med 78(4): 386–389.  https://doi.org/10.1055/4-0031-1298157PubMedCrossRefGoogle Scholar
  44. 44.
    Lajnef HB, Ferioli F, Pasini F, Politowicz J, Khaldi A, D’Antuono F, Caboni MF, Nasri N (2017) Chemical composition and antioxidant activity of the volatile fraction extracted from air-dried fruits of Tunisian Eryngium maritimum L. ecotypes. J Sci Food Agric 98(2):635–643.  https://doi.org/10.1002/jsfa.8508PubMedCrossRefGoogle Scholar
  45. 45.
    Dunkic V, Vuko E, Bezic N, Kremer D, Ruscic M (2013) Composition and antiviral activity of the essential oils of Eryngium alpinum and E. amethystinum. Chem Biodivers 10:1894–1902.  https://doi.org/10.1002/cbdv.201300061PubMedCrossRefGoogle Scholar
  46. 46.
    Venugopala KN, Rashmi V, Odhav B (2013) Review on natural coumarin lead compounds for their pharmacological activity. Biomed Res Int 2013:ID 963248CrossRefGoogle Scholar
  47. 47.
    Suleimenov EM, Machmudah S, Sasaki M, Goto M (2010) Composition of the CO2 extract of Eryngium planum. Chem Nat Compd 46:826.  https://doi.org/10.1007/s10600-010-9759-2CrossRefGoogle Scholar
  48. 48.
    Kamiński B, Głowniak K, Majewska A, Petkowicz J, Szaniawska-Dekundy D (1978) Poszukiwanie związków kumarynowych w nasionach i owocach. I. Owoce rodziny baldaszkowatych (Umbelliferae-Apiaceae). Farm Pol 34:25–28Google Scholar
  49. 49.
    Christensen LP, Brandt K (2006) Bioactive polyacetylenes in food plants of the Apiaceae family: occurrence, bioactivity and analysis. J Pharm Biomed Anal 41:683–693.  https://doi.org/10.1016/j.jpba.2006.01.057PubMedCrossRefGoogle Scholar
  50. 50.
    Erdelmeier CAJ, Sticher O (1986) A cyclohexanone and a cyclohexadienone glycoside from Eryngium campestre. Phytochemistry 25(3):741–743.  https://doi.org/10.1016/0031-9422(86)88036-0CrossRefGoogle Scholar
  51. 51.
    Hegnauer R (1973) Chemotaxonomie der Pflanzen. Band 6. Birkhäuser Verlag, Berlin, pp 563–627CrossRefGoogle Scholar
  52. 52.
    Hegnauer R (1990) Chemotaxonomie der Pflanzen. Band 9. Birkhäuser Verlag, Berlin, pp 678–679CrossRefGoogle Scholar
  53. 53.
    Santas J, Codony R, Rafecas M (2013) Phytosterols: beneficial effects. In: Ramawat K, Mérillon JM (eds) Natural products. Springer, Berlin/Heidelberg.  https://doi.org/10.1007/978-3-642-22144-6_149CrossRefGoogle Scholar
  54. 54.
    Madej A, Aligiannis N, Głowniak K, Skaltsounis AL (2006) Chemical composition of Eryngium planum L. (Apiaceae). In: 5th international symposium on chromatography of natural products (ISCNP), June 19–22, Lublin, p 151Google Scholar
  55. 55.
    Dinan L, Lafont R (2006) Effects and applications of arthropod steroid hormones (ecdysteroids) in mammals. J Endocrinol 191:1–8.  https://doi.org/10.1677/joe.1.06900PubMedCrossRefGoogle Scholar
  56. 56.
    Dinan L, Savchenko T, Whiting P (2001) On the distribution of phytoecdysteroids in plants. Cell Mol Life Sci 58(8):1121–1132.  https://doi.org/10.1007/PL00000926PubMedCrossRefGoogle Scholar
  57. 57.
    Adrian-Romero M, Wilson SJ, Blunden G, Yang M-H, Carabot-Cuervo A, Bashir AK (1998) Betaines in coastal plants. Biochem Syst Ecol 26:535–543CrossRefGoogle Scholar
  58. 58.
    Nebija F, Stefkov G, Karapandzova M, Stafilov T, Kadifkova Panovska T, Kulevanova S (2009) Chemical characterization and antioxidant activity of Eryngium campestre L., Apiaceae from Kosovo. Maced Pharm Bull 55(1, 2):22–32.  https://doi.org/10.33320/maced.pharm.bull.2009.55.002CrossRefGoogle Scholar
  59. 59.
    Gruenwald J, Brendler T, Jaenicke C (2000) PDR for herbal medicines, 2nd edn. Medical Economics Company, Montvale, pp 729–733Google Scholar
  60. 60.
    Kupeli E, Kartal M, Aslan S, Yesilada E (2006) Comparative evaluation of the anti-inflammatory and antinociceptive activity of Turkish Eryngium species. J Ethnopharmacol 107(1):32–37PubMedCrossRefGoogle Scholar
  61. 61.
    Lev E (2002) Reconstructed materia medica of the Medieval and Ottoman al-Sham. J Ethnopharmacol 80:167–179PubMedCrossRefGoogle Scholar
  62. 62.
    Duke JA, Boegenschutz-Godwin MJ, du Cellier J, Duke PA (2002) Handbook of medicinal herbs. CRC Press, Boca Raton, pp 277–278CrossRefGoogle Scholar
  63. 63.
    Baytop T (1999) Therapy with medicinal plants in Turkey (Past and present), 2nd edn. Nobel Tip Basimevi, IstanbulGoogle Scholar
  64. 64.
    Kholkhal W, Ilias F, Bekhechi C, Bekkara FA (2012) Eryngium maritimum: a rich medicinal plant of polyphenols and flavonoids compounds with antioxidant, antibacterial and antifungal activities. Curr Res J Biol Sci 4(4):437–443Google Scholar
  65. 65.
    Matkowski A (2008) Plant in vitro culture for the production of the antioxidants – a review. Biotechnol Adv 26(6):548–560.  https://doi.org/10.1016/j.biotechadv.2008.07.001PubMedCrossRefGoogle Scholar
  66. 66.
    Bajaj YPS, Furmanowa M, Olszowska O (1988) Biotechnology of the micropropagation of medicinal and aromatic plants. In: Bajaj YPS (ed) Medicinal and aromatic plants I. Biotechnology in agriculture and forestry, vol 4. Springer, Berlin/Heidelberg/New York, pp 60–103Google Scholar
  67. 67.
    Pence VC (2011) Evaluating costs for the in vitro propagation and preservation of endangered plants. In Vitro Cell Dev Biol Plant 47:176–187.  https://doi.org/10.1007/s11627-010-9323-6CrossRefGoogle Scholar
  68. 68.
    Sliwinska E, Thiem B (2007) Genome size stability in six medicinal plant species propagated in vitro. Biol Plant 51(3):556–558.  https://doi.org/10.1007/s10535/007-0121-xCrossRefGoogle Scholar
  69. 69.
    Kikowska M, Kędziora I, Krawczyk A, Thiem B (2015) Methyl jasmonate, yeast extract and sucrose stimulate phenolic acid accumulation in Eryngium planum L. shoot cultures. Acta Biochim Pol 62(2):197–200.  https://doi.org/10.18388/abp.2014_880PubMedCrossRefGoogle Scholar
  70. 70.
    Kikowska M, Budzianowski J, Krawczyk A, Thiem B (2012) Accumulation of rosmarinic, chlorogenic and caffeic acid in in vitro of Eryngium planum L. Acta Physiol Plant 34(6): 2425–2433.  https://doi.org/10.1007/s11738-012-1011-1CrossRefGoogle Scholar
  71. 71.
    Gonçavles S, Romano A (2018) Production of plant secondary metabolites by using biotechnological tools. In: Vijayakumar R, Raja SSS (eds) Secondary metabolites – sources and applications. IntechOpen  https://doi.org/10.5772/intechopen.76414Google Scholar
  72. 72.
    Smetanska I (2008) Production of secondary metabolites using plant cell cultures. Adv Biochem Eng Biotechnol 111:187–228.  https://doi.org/10.1007/10_2008_103PubMedCrossRefGoogle Scholar
  73. 73.
    Espinosa-Leal C, Puente-Garza CA, Garcia-Lara S (2018) In vitro plant tissue culture: means for production of biological active compounds. Planta 248(1):1–18.  https://doi.org/10.1007/s00425-018-2910-1PubMedCrossRefGoogle Scholar
  74. 74.
    Wojtanowski KK, Skalicka-Woźniak K, Głowniak K, Mroczek T (2013) Screening of the antioxidant potentials of polar extracts from fruits of Eryngium planum and Eryngium amethystinum using the β-carotene-linoleic assay. Curr Issues Pharm Med Sci 26(3):276–278.  https://doi.org/10.12923/j.2084-980x/26.3/a.07CrossRefGoogle Scholar
  75. 75.
    Meot-Duros L, Le Floch G, Magne C (2008) Radical scavenging, antioxidant and antimicrobial activities of halophytic species. J Ethnopharmacol 116(2):258–262.  https://doi.org/10.1016/j.jep.2007.11.024PubMedCrossRefGoogle Scholar
  76. 76.
    Thiem B, Goślińska O, Kikowska M, Budzianowski J (2010) Antimicrobial activity of three Eryngium L. species (Apiaceae). Herba Pol 56(4):52–59Google Scholar
  77. 77.
    Kikowska M, Długaszewska J, Kubicka MM, Kędziora I, Budzianowski J, Thiem B (2016) In vitro antimicrobial activity of extracts and their fractions from three Eryngium L. species. Herba Pol 62(2):67–77.  https://doi.org/10.1515/hepo-2016-0012CrossRefGoogle Scholar
  78. 78.
    Moghaddam NS, Eryilmaz M, Altanlar N, Yildirim O (2019) Antimicrobial screening of some selected Turkish medicinal plants. Pak J Pharm Sci 32(3):947–951PubMedGoogle Scholar
  79. 79.
    Derda M, Thiem B, Budzianowski J, Hadaś E, Wojt WJ, Wojtkowiak-Giera A (2013) The evaluation of amoebicidal activity of Eryngium planum extracts. Acta Pol Pharm Drug Res 70(6):1027–1034Google Scholar
  80. 80.
    Bogucka-Kocka A, Smolarz HD, Kocki J (2008) Apoptotic activities of ethanol extracts from some Apiaceae on human leukaemia cell lines. Fitoterapia 79:487–497.  https://doi.org/10.1016/j.fitote.2008.07.002PubMedCrossRefGoogle Scholar
  81. 81.
    Ożarowski M, Thiem B, Mikołajczak PL, Piasecka A, Kachlicki P, Szulc M, Kaminska E, Bogacz A, Kujawski R, Bartkowiak-Wieczorek J, Kujawska M, Jodynis-Libert J, Budzianowski J, Kędziora I, Seremak-Mrozikiewicz A, Czerny B, Bobkiewicz-Kozłowska T (2015) Improvement in long-term memory following chronic administration of Eryngium planum root extract in scopolamine model: behavioral and molecular study. Evid Based Complement Alternat Med 2015:ID 145140, 1–13.  https://doi.org/10.1155/2015/145140CrossRefGoogle Scholar
  82. 82.
    Conea S, Parvu AE, Taulescu MA, Vlase L (2015) Effects of Eryngium planum and Eryngium campestre extracts on ligature-induced rat periodontitis. Dig J Nanomater Biostruct 10(2): 693–704Google Scholar
  83. 83.
    Lisciani R, Fattorusso E, Surano V, Cozzolino S, Giannattasio M, Sorrentino L (1984) Anti-inflammatory activity of Eryngium maritimum L. rhizome extracts in intact rats. J Ethnopharmacol 12(3):263–270PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Pharmaceutical Botany and Plant BiotechnologyPoznan University of Medicinal SciencesPoznańPoland

Personalised recommendations