Advertisement

Secondary Metabolites of Various Eleuthero (Eleutherococcus senticosus/Rupr. et Maxim./Maxim) Organs Derived from Plants Obtained by Somatic Embryogenesis

  • Katarzyna Bączek
  • Anna Pawełczak
  • Jarosław L. Przybył
  • Olga Kosakowska
  • Zenon WęglarzEmail author
Living reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)

Abstract

Eleuthero is a thorny shrub native to Far East Asia, where for centuries it has been used as a medicinal plant. Due to strong adaptogenic activity, it has recently received considerable attention from both consumers and scientists. Although eleuthero is a rare, and in certain countries protected, species, its raw materials, i.e., underground organs, are still exclusively collected from natural sites. Thus, introduction into cultivation gives the chance for its survival in natural habitat. Note that eleuthero is characterized by a relatively low reproductive capacity; both generative and simple vegetative propagations are ineffective. The most efficient method to increase the reproductive potential of this plant on the purpose of its cultivation is application of in vitro techniques. In the case of eleuthero, the phenomenon of direct somatic embryogenesis is observed. The most effective explants for establishing the formation of somatic embryos are apical buds and hypocotyl fragments of plantlets obtained from extremely immature zygotic embryos that were isolated from seeds. In such cases, somatic embryos are directly formed on the explant tissues without the callus phase. Plants that are obtained from somatic embryos adapt relatively well to ex vitro conditions. In subsequent years of cultivation (4-year cycle), they can be an effective source of biologically active compounds, such as eleutherosides B and E, which have been used to standardize the raw material. The content of eleutherosides and other active compounds, such as phenolic acids, changes with the age of plants and depends on developmental phase of the plant, as well as on the plant organs (rhizomes, roots, shoots, or bark of these organs). The anatomical studies of plant tissues indicate that these compounds accumulate in the form of heterogeneous secretion in schizogenous reservoirs as well as in the vacuoles of epithelial and parenchymal cells of the secondary phloem.

Keywords

Eleuthero Diversity Reproduction ability In vitro propagation Solid medium Somatic embryos Eleutherosides Phenolic acids Schizogenous reservoirs 

Abbreviations

BA

6-Benzyladenine (cytokinin)

DW

Dry weight

EMA

European Medicines Agency

ESCOP

European Scientific Cooperative on Phytotherapy

hLf

Human lactoferrin

HMPs

Herbal medicinal products

HPLC

High-performance liquid chromatography

LTB

Escherichia coli heat-labile toxin

MS

Murashige and Skoog medium

MS/B5

Murashige and Skoog/Gamborg 5B medium

NAA

1-Naphthaleneacetic acid (auxin)

PgSS1

Panax ginseng squalene synthase gene

TCM

Traditional Chinese Medicine

Tr.

Trace amount

WHO

World Health Organization

WR

Without growth regulators

Notes

Acknowledgments

The study was supported by Polish Ministry of Agriculture and Rural Development, grant no. N N310 312834

References

  1. 1.
    Court WC (2000) Ginseng the genus Panax. OPA, AmsterdamGoogle Scholar
  2. 2.
    Davydov M, Krikorian AD (2000) Eleutherococcus senticosus (Rupr et Maxim) Maxim (Araliaceae) as an adaptogen a closer look. J Ethnopharmacol 72:345–393CrossRefGoogle Scholar
  3. 3.
    Panossian A, Wikman G, Wagner H (1999) Plant adaptogens III. Earlier and more recent aspects and concepts on their mode of action. Phytomedicine 6(4):287–300CrossRefGoogle Scholar
  4. 4.
    Borkowski B (1995) Żeń-szeń syberyjski. Wiadomości Zielarskie 37:6–8Google Scholar
  5. 5.
    Wagner H (1995) Immunostimulants and adaptogens from plants. In: Arnason JT, Mata RI, Roaeo JT (eds) Phytochemistry of medicinal plants. Plenum Press, New YorkGoogle Scholar
  6. 6.
    Pharmacopoeia of the People’s Republic of China (1997) Chemical Industry Press, BeijingGoogle Scholar
  7. 7.
    Shikov AN, Pozharitskaya ON, Markov VG, Wagner H, Verpoorte R, Heinrich M (2014) Medicinal plants of the Russian Pharmacopoeia; their history and applications. J Ethnopharmacol 154(3):481–536CrossRefGoogle Scholar
  8. 8.
    The Japanese Pharmacopoeia 17th (2016) The Ministry of Health, Labour and Welfare. https://www.mhlw.go.jp/file/06-Seisakujouhou-11120000-Iyakushokuhinkyoku/JP17_REV_1.pdf. Accessed 3 June 2019
  9. 9.
    European Pharmacopoeia 8th (2014) Eleuthero roots – Eleutherococcus radix. European Directorate for the Quality of Medicines and Health Care, Council of Europe, StrasbourgGoogle Scholar
  10. 10.
    EMA (2014) Assessment report on Eleutherococcus senticosus (Rupr et Maxim) Maxim, radix. EMA/HMPC/680615/2013. Committee on Herbal Medicinal Products (HMPC)Google Scholar
  11. 11.
    WHO (2004) Radix Eleutherococci. In: WHO monographs on medicinal plants. https://apps.who.int/medicinedocs/en/d/Js4927e/10.html#Js4927e.10. Accessed 2 June 2019
  12. 12.
    Kim CH, Sun BY (2004) Infrageneric classification of the genus Eleutherococcus Maxim (Araliaceae) with a new section Cissiflolius. J Plant Biol 47:282–288CrossRefGoogle Scholar
  13. 13.
    Lee YN (1997) Flora of Korea. Kyo-Hak Publishing, SeoulGoogle Scholar
  14. 14.
    Yu CY, Kim SH, Lim JD, Kim MJ, Chung IM (2003) Intraspecific analysis by DNA markers and in vitro cytotoxic and antioxidant activity in Eleutherococcus senticosus. Toxicol in Vitro 17:229–236CrossRefGoogle Scholar
  15. 15.
    Shrietier AC (1976) Svobodnojagodnik koljučij. In: Cikov PS (ed) Atlas arealov i resursov lekarstviennych rastienij SSSR. Gosudarstviennoe Izdatiel’stvo Medicinskoj Literatury, MoscowGoogle Scholar
  16. 16.
    Qibai X, Lowry PP (2007) Araliaceae. In: Flora of China, vol 13. Missouri Botanical Garden Press/Science Press, St. Louis/Beijing, pp 435–472Google Scholar
  17. 17.
    Ożarowski A, Rumińska A, Suchorska K, Węglarz Z (1990) Leksykon roślin leczniczych. PWRiL, WarsawGoogle Scholar
  18. 18.
    Lin-De L, Zhong-Li W, Guo-Wie T, Jia-Heng S (1997) Observation on floral morphology and heteranthery of Eleutherococcus senticosus (Araliaceae). Acta Phytotax Sin 35(1):1–6Google Scholar
  19. 19.
    Lin-De L, Zhong-Li W, Guo-Wie T, Jia-Heng S (1998) The pollination biology of Eleutherococcus senticosus (Araliaceae). Acta Phytotax Sin 36(1):19–27Google Scholar
  20. 20.
    Tumiłowicz J, Banaszczak P (2006) Drzewa i krzewy z rodziny Araliaceae w Arboretum w Rogowie. Rocznik Dendrologiczny 54:35–50Google Scholar
  21. 21.
    Willuhn G (2004) Radix Eleutherococci. In: Wichtl M (ed) Herbal drugs and phytopharmaceuticals. Medpharm Scientific Publishers/CRC Press, Stuttgart/Boca RatonGoogle Scholar
  22. 22.
    Lin-De L, Zhong-Li W, Guo-Wie T, Jia-Heng S (1997) Studies on sexual reproduction and vegetative propagation of Eleutherococcus senticosus (Araliaceae). Acta Phytotax Sin 35(1):7–13Google Scholar
  23. 23.
    Zhu N, Wang YH (1992) Reproductive ecological studies of Acanthopanax senticosus (II) – seed dispersal, seed bank and recruitment. J Northeast For Univ 20:13–17Google Scholar
  24. 24.
    You XL, Choi YE, Yi JS (2005) Rapid in vitro germination of zygotic embryos via endosperm removal in Eleutherococcus senticosus. J Plant Biotechnol 7(1):75–80Google Scholar
  25. 25.
    Choi YE, Kim JW, Yoon ES (1999) High frequency of plant production via somatic embryogenesis from callus or cell suspension cultures in Eleutherococcus senticosus. Ann Bot 83:309–314CrossRefGoogle Scholar
  26. 26.
    Park HK, Park MS, Kim TS, Kim S, Choi KG, Park KH (1997) Characteristics of embryo growth and dehiscence during the after-ripening period in Eleutherococcus senticosus. Korean J Crop Sci 42:637–677Google Scholar
  27. 27.
    Isoda S, Shoji J (1994) Studies on cultivation of Eleutherococcus senticosus Maxim (II). On the germination and raising of seedling. Nat Med 48:75–81Google Scholar
  28. 28.
    Thiem B, Kikowska M (2008) The assurance of medicinal plants quality propagated in in vitro cultures. Herba Pol 54(4):168–178Google Scholar
  29. 29.
    Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiol 15(3):473–497CrossRefGoogle Scholar
  30. 30.
    Gamborg OL, Miller RA, Ojima K (1965) Nutrient requirements of suspension cultures of soybean cell cultures. Exp Cell Res 50:151–158CrossRefGoogle Scholar
  31. 31.
    Trigiano RN, Gray DJ, Conger BV, McDaniel JK (1989) Origin of direct somatic embryos from cultured leaf segments of Dactylis glomerata. Bot Gaz 150(1):72–77CrossRefGoogle Scholar
  32. 32.
    Ouiroz-Figueroa FR, Fuentes-Cerda CFJ, Rojas-Herrera R, Loyola-Vargas VM (2002) Histological studies on the developmental stages of two different somatic embryogenesis systems of Coffea Arabica. Plant Cell Rep 20:1141–1149CrossRefGoogle Scholar
  33. 33.
    Gogate SS, Nadgauda RS (2003) Direct somatic embryogenesis from immature zygotic embryo of cashewnut (Anacardium occidentale L.). Sci Hortic 97:75–82CrossRefGoogle Scholar
  34. 34.
    Ducos JP, Lambot C, Petiard V (2007) Bioreactors for coffee mass propagation by somatic embryogenesis. Int J Plant Dev Biol 1(1):1–12Google Scholar
  35. 35.
    Xiang LY, Xiao T, Jin LD, Yu HL, Yong EC (2012) Large scale somatic embryogenesis and regeneration of Panax notoginseng. Plant Cell Tissue Organ Cult 108:333–338CrossRefGoogle Scholar
  36. 36.
    Martin KP (2004) Plant regeneration through somatic embryogenesis in medicinally important Centella asiatica L. In Vitro Cell Dev Biol Plant 40:586–591CrossRefGoogle Scholar
  37. 37.
    Martin KP, Madassery J (2005) Direct and indirect somatic embryogenesis on cotyledon explants of Quassia amara L., an antileukaemic drug plant. In Vitro Cell Dev Biol Plant 41:54–57CrossRefGoogle Scholar
  38. 38.
    Paul S, Dam A, Bhattacharya A, Bandyopadhyay TK (2011) An efficient regeneration system via direct and indirect embryogenesis for the medicinal tree Murraya koenigii. Plant Cell Tissue Organ Cult 105:271–283CrossRefGoogle Scholar
  39. 39.
    Rao MM, Sita L (1996) Direct somatic embryogenesis from immature embryos of rosewood (Dalbergia latifolia Roxb). Plant Cell Rep 15:355–359CrossRefGoogle Scholar
  40. 40.
    Choi YE, Jeong JH (2002) Dormancy induction of somatic embryos of Siberian ginseng by high sucrose concentrations enhances the conservation of hydrated artificial seeds and dehydration resistance. Plant Cell Rep 20:1112–1116CrossRefGoogle Scholar
  41. 41.
    Shohael AM, Chakrabarty D, Yu KW, Hahn EJ, Peak K-Y (2005) Application of bioreactor system for large-scale production of Eleutherococcus somatic embryos in an air-lift bioreactor and production of eleutherosides. J Biotechnol 120:228–236CrossRefGoogle Scholar
  42. 42.
    Park S-Y, Ahn J-K, Lee W-Y, Murthy HN, Peak K-Y (2005) Mass production of Eleutherococcus koreanum plantlets via somatic embryogenesis from root cultures and accumulation of eleutherosides in regenerants. Plant Sci 168:1221–1225CrossRefGoogle Scholar
  43. 43.
    Shohael AM, Khatum SM, Hosakatte NM, Paek K-Y (2014) Production of bioactive compounds from somatic embryo suspension cultures of siberian ginseng in bioreactors. In: Peak K-Y (ed) Production of biomass and bioactive compounds using bioreactor technology. Springer, DordrechtGoogle Scholar
  44. 44.
    Li CH, Lim JD, Heo K et al (2004) Long-term cold storage and plant regeneration of suspension cultured somatic embryos of Eleutherococcus senticosus Maxim. Korean J Med Crop Sci 12:494–499Google Scholar
  45. 45.
    Jung SJ, Yoon ES, Jeong JH et al (2004) Enhanced post-germinative growth of encapsulated somatic embryos of Siberian ginseng by carbohydrate addition to the encapsulation matrix. Plant Cell Rep 23:365–370CrossRefGoogle Scholar
  46. 46.
    Jo SH, Kwon SY, Kim JW, Lee KT, Kwak SS, Lee HS (2005) Transgenic Siberian ginseng cultured cells that produce high levels of human lactoferrin. Korean J Plant Biotechnol 32:209–215CrossRefGoogle Scholar
  47. 47.
    Jo SH, Kwon SY, Park DS et al (2006) High-yield production of functional human lactoferrin in transgenic cell cultures of Siberian ginseng (Acanthopanax senticosus). Biotechnol Bioprocess Eng 11:442CrossRefGoogle Scholar
  48. 48.
    Seo JW, Jeong JH, Shin CG et al (2005) Overexpression of squalene synthase in Eleutherococcus senticosus increases phytosterol and triterpene accumulation. Phytochemistry 66(8):869–877CrossRefGoogle Scholar
  49. 49.
    Kang TJ, Lee WS, Choi EG et al (2005) Mass production of somatic embryos expressing Escherichia coli heat-labile enterotoxin B subunit in Siberian ginseng. J Biotechnol 121:124–133CrossRefGoogle Scholar
  50. 50.
    Bączek K, Przybył JL, Kosakowska O, Węglarz Z (2017) Accumulation of phenolics in eleuthero (Eleutherococcus senticosus (Rupr. et Maxim.) Maxim.) as affected by plant development. Acta Sci Pol Hortorum Cultus 16(4):89–99CrossRefGoogle Scholar
  51. 51.
    Gui Y, Guo Z, Ke S, Skirvin RH (1991) Somatic embryogenesis and plant regeneration in Acanthopanax senticosus. Plant Cell Rep 9:514–516CrossRefGoogle Scholar
  52. 52.
    Fujikawa T, Yamaguchi A, Morita I, Takeda H, Nishibe S (1996) Protective effects of Acanthopanax senticosus Harms from Hokkaido and its components on gastric ulcer in restrained cold water stressed rats. Biol Pharm Bull 19(9):1227–1230CrossRefGoogle Scholar
  53. 53.
    Bączek K (2009) Accumulation of biologically active compounds in eleuthero (Eleutherococcus senticosus (Rupr. et Maxim.) Maxim.) grown in Poland. Herba Pol 55(1):7–13Google Scholar
  54. 54.
    Choi E-M, Ding Y, Huu TN et al (2008) Chiisanoside, a lupane triterpenoid from Acanthopanax leaves, stimulates proliferation and differentiation of osteoblastic MC3T3-E1 cells. Nat Prod Sci 14(1):21–26Google Scholar
  55. 55.
    Nishibe S, Kinoshita H, Takeda H, Okano G (1990) Phenolic compounds from stem bark of Acanthopanax senticosus and their pharmacological effect in chronic swimming stressed rats. Chem Pharm Bull 38(6):1763–1765CrossRefGoogle Scholar
  56. 56.
    Kohlmünzer S (2000) Farmakognozja. Podręcznik dla studentów farmacji. PZWL, WarsawGoogle Scholar
  57. 57.
    Zgórka G, Kawka S (2001) Application of conventional UV, photodiode array (PDA) and fluorescence (FL) detection to analysis of phenolic acids in plant material and pharmaceutical preparations. J Pharm Biomed Anal 24:1065–1072CrossRefGoogle Scholar
  58. 58.
    Kurkin VA, Dubishchev AV, Ezhkov VN, Titova IN, Avdeeva EV (2006) Antidepressant activity of some phytopharmaceuticals and phenylpropanoids. Pharm Chem J 40(11):614–619CrossRefGoogle Scholar
  59. 59.
    Anetai M, Yamagishi T, Kaneshima H (1995) Determination of some constituents in Acanthopanax senticosus Harms. Differences among part, diameter, age, and harvest time. Report of the Hokkaido Institute of Public Health 45:63–65Google Scholar
  60. 60.
    Li X-C, Barnes DL, Khan IA (2001) A new lignan glycoside from Eleutherococcus senticosus. Planta Med 67:776–780CrossRefGoogle Scholar
  61. 61.
    Richter R, Hanssen H-P, Koening WA (2007) Essential oil composition of Eleutherococcus senticosus (Rupr et Maxim) Maxim roots. J Essent Oil Res 19:209–210CrossRefGoogle Scholar
  62. 62.
    Kim HM, Kim JS, Lee S, Lee S-J, Lee GP, Kang SS, Cho SH, Cheoi D-S (2006) Quantitative analysis of lignans in the fruits of Acanthopanax species by HPLC. Food Sci Biotech 15(5):776–780Google Scholar
  63. 63.
    Wagner H, Nörr H, Winterhoff M, Winterhoff H (1992) Drogen mit adaptogenwirkung zur stärkung der widerstandskräfte. Zeitschrift für Phytotherapie 13:42–54Google Scholar
  64. 64.
    Nielson AJ, Griffith WP (1978) Tissue fixation and staining with osmium tetroxide. The role of phenolic compounds. J Histochem Cytochem 26(2):138–140CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Katarzyna Bączek
    • 1
  • Anna Pawełczak
    • 1
  • Jarosław L. Przybył
    • 1
  • Olga Kosakowska
    • 1
  • Zenon Węglarz
    • 1
    Email author
  1. 1.Laboratory of New Herbal Products, Department of Vegetable and Medicinal PlantsWarsaw University of Life Sciences – SGGWWarsawPoland

Personalised recommendations