Appraisal of Solar Radiation with Modelling Approach for Solar Farm Design

Living reference work entry


Sun irradiation is a significant consideration in solar power systems’ feasibility. Many models were suggested to estimate solar radiation concentrations because there is a lack of meteorological data available in the field. On the contrary, the efficiency of these models depends heavily on climate and ecological variables. This is one of the main reasons for increasing the amount of models available. This study aims to determine the most appropriate models for two specific cities chosen in a specific climatic region and to design a photovoltaic system for maximum effectiveness under particular weather conditions in Turkey; for these cities’ solar energy potentials, a comparative analysis in the third climatic region is also offered. It aims at extending the study to other towns in the country’s remaining climatic areas and generating a detailed model of solar radiation.


Solar energy Solar farm Global solar radiation Renewable energy Data analysis Photovoltaic 


  1. 1.
  2. 2.
  3. 3.
    Qazi A, Fayaz H, Wadi A, Raj RG, Rahim NA, Khan WA (2015) The artificial neural network for solar radiation prediction and designing solar systems: a systematic literature review. J Clean Prod 104:1–12CrossRefGoogle Scholar
  4. 4.
    Piri J, Kisi O (2015) Modelling solar radiation reached to the Earth using ANFIS, NNARX, and empirical models (Case studies: Zahedan and Bojnurd stations). J Atmos Sol Terr Phys 123:39–47CrossRefGoogle Scholar
  5. 5.
    Teke A, Yıldırım HB, Çelik Ö (2015) Evaluation and performance comparison of different models for the estimation of solar radiation. Renew Sust Energ Rev 50:1097–1107CrossRefGoogle Scholar
  6. 6.
    Mohammadi K, Shamshirband S, Anisi MH, Alam KA, Petković D (2015) Support vector regression based prediction of global solar radiation on a horizontal surface. Energy Convers Manag 91:433–441CrossRefGoogle Scholar
  7. 7.
    Behrang MA, Assareh E, Noghrehabadi AR, Ghanbarzadeh A (2011) New sunshine-based models for predicting global solar radiation using PSO (particle swarm optimization) technique. Energy 36:3036–3049CrossRefGoogle Scholar
  8. 8.
    Besharat F, Dehghan AA, Faghih AR (2013) Empirical models for estimating global solar radiation: a review and case study. Renew Sust Energ Rev 21:798–821CrossRefGoogle Scholar
  9. 9.
    El-Sebaii AA, Al-Ghamdi AA, Al-Hazmi FS, Faidah AS (2009) Estimation of global solar radiation on horizontal surfaces in Jeddah, Saudi Arabia. Energy Policy 37:3645–3649CrossRefGoogle Scholar
  10. 10.
    El-Sebaii AA, Al-Hazmi FS, Al-Ghamdi AA, Yaghmour SJ (2010) Global, direct and diffuse solar radiation on horizontal and tilted surfaces in Jeddah, Saudi Arabia. Appl Energy 87:568–576CrossRefGoogle Scholar
  11. 11.
    Chelbi M, Gagnon Y, Waewsak J (2015) Solar radiation mapping using sunshine length based models and interpolation techniques: application to Tunisia. Energy Convers Manag 101:203–215CrossRefGoogle Scholar
  12. 12.
    Yao W, Li Z, Wang Y, Jiang F, Hu L (2014) Evaluation of global solar radiation models for Shanghai, China. Energy Convers Manag 84:597–612CrossRefGoogle Scholar
  13. 13.
    Teke A, Yıldırım HB (2014) Estimating the monthly global solar radiation for Eastern Mediterranean Region. Energy Convers Manag 87:628–635CrossRefGoogle Scholar
  14. 14.
    Khorasanizadeh H, Mohammadi K (2013) Introducing the best model for predicting the monthly mean global solar radiation over six major cities of Iran. Energy 51:257–266CrossRefGoogle Scholar
  15. 15.
    Senkal O (2010) Modeling of solar radiation using remote sensing and artificial neural network in Turkey. Energy 35:4795–4801CrossRefGoogle Scholar
  16. 16.
    Manzano A, Martín ML, Valero F, Armenta C (2015) A single method to estimate the daily global solar radiation from monthly data. Atmos Res 166:70–82CrossRefGoogle Scholar
  17. 17.
    Ozgoren M, Bilgili M, Sahin B (2012) Estimation of global solar radiation using ANN over Turkey. Expert Syst Appl 39:5043–5051CrossRefGoogle Scholar
  18. 18.
    Park J-K, Das A, Park J-H (2015) A new approach to estimate the spatial distribution of solar radiation using topographic factor and sunshine length in South Korea. Energy Convers Manag 101:30–39CrossRefGoogle Scholar
  19. 19.
    Mohandes MA (2012) Modeling global solar radiation using particle swarm optimization (PSO). Sol Energy 86:3137–3145CrossRefGoogle Scholar
  20. 20.
    Hacer D, Aydin H (2012) Sunshine-based estimation of global solar radiation on horizontal surface at Lake Van region (Turkey). Energy Convers Manag 58:35–46CrossRefGoogle Scholar
  21. 21.
    Shamshirband S, Mohammadi K, Yee PL, Petković D, Mostafaeipour A (2015) A comparative evaluation for identifying the suitability of extreme learning machine to predict horizontal global solar radiation. Renew Sust Energ Rev 52:1031–1042CrossRefGoogle Scholar
  22. 22.
    Adaramola MS (2012) Estimating global solar radiation using common meteorological data in Akure, Nigeria. Renew Energy 47:38–44CrossRefGoogle Scholar
  23. 23.
    Li H, Ma W, Lian Y, Wang X, Zhao L (2011) Global solar radiation estimation with sunshine length in Tibet, China. Renew Energy 36:3141–3145CrossRefGoogle Scholar
  24. 24.
    Jin Z, Yezheng W, Gang Y (2005) General formula for estimation of monthly average daily global solar radiation in China. Energy Convers Manag 46:257–268CrossRefGoogle Scholar
  25. 25.
    Bakirci K (2009) Models of solar radiation with hours of bright sunshine: a review. Renew Sust Energ Rev 13:2580–2588CrossRefGoogle Scholar
  26. 26.
    Fariba B, Dehghan AA, Faghih AR (2013) Empirical models for estimating global solar radiation: a review and case study. Renew Sust Energ Rev 21:798–821CrossRefGoogle Scholar
  27. 27.
    Jiang H, Dong Y, Wang J, Li Y (2015) Intelligent optimization models based on hard-ridge penalty and RBF for forecasting global solar radiation. Energy Convers Manag 95:42–58CrossRefGoogle Scholar
  28. 28.
    Katiyar AK, Pandey CK (2010) Simple correlation for estimating the global solar radiation on horizontal surfaces in India. Energy 35:5043–5048CrossRefGoogle Scholar
  29. 29.
    Qin J, Chen Z, Yang K, Liang S, Tang W (2011) Estimation of monthly-mean daily global solar radiation based on MODIS and TRMM products. Appl Energy 88:2480–2489CrossRefGoogle Scholar
  30. 30.
    Şenkal O, Kuleli T (2009) Estimation of solar radiation over Turkey using artificial neural network and satellite data. Appl Energy 86:1222–1228CrossRefGoogle Scholar
  31. 31.
    Dumas A, Andrisani A, Bonnici M, Graditi G, Leanza G, Madonia M et al (2015) A new correlation between global solar energy radiation and daily temperature variations. Sol Energy 116:117–124CrossRefGoogle Scholar
  32. 32.
    Yadav AK, Malik H, Chandel SS (2014) Selection of most relevant input parameters using WEKA for artificial neural network based solar radiation prediction models. Renew Sust Energ Rev 31:509–519CrossRefGoogle Scholar
  33. 33.
    Yadav AK, Malik H, Chandel SS (2015) Application of rapid miner in ANN based prediction of solar radiation for assessment of solar energy resource potential of 76 sites in Northwestern India. Renew Sust Energ Rev 52:1093–1106CrossRefGoogle Scholar
  34. 34.
    Janjai S, Pankaew P, Laksanaboonsong J, Kitichantaropas P (2011) Estimation of solar radiation over Cambodia from long-term satellite data. Renew Energy 36:1214–1220CrossRefGoogle Scholar
  35. 35.
    Zang H, Xu Q, Bian H (2012) Generation of typical solar radiation data for different climates of China. Energy 38:236–248CrossRefGoogle Scholar
  36. 36.
    Yadav AK, Chandel SS (2014) Solar radiation prediction using Artificial Neural Network techniques: a review. Renew Sust Energ Rev 33:772–781CrossRefGoogle Scholar
  37. 37.
    Sun H, Yan D, Zhao N, Zhou J (2015) Empirical investigation on modeling solar radiation series with ARMA–GARCH models. Energy Convers Manag 92:385–395CrossRefGoogle Scholar
  38. 38.
    Zhao N, Zeng X, Han S (2013) Solar radiation estimation using sunshine hour and air pollution index in China. Energy Convers Manag 76:846–851CrossRefGoogle Scholar
  39. 39.
    Ayodele TR, Ogunjuyigbe ASO (2015) Prediction of monthly average global solar radiation based on statistical distribution of clearness index. Energy 90:1733–1742CrossRefGoogle Scholar
  40. 40.
    Korachagaon I, Bapat VN (2012) General formula for the estimation of global solar radiation on earth’s surface around the globe. Renew Energy 41:394–400CrossRefGoogle Scholar
  41. 41.
    Bakirci K (2009) Correlations for estimation of daily global solar radiation with hours of bright sunshine in Turkey. Energy 34:485–501CrossRefGoogle Scholar
  42. 42.
    Olatomiwa L, Mekhilef S, Shamshirband S, Petković D (2015) Adaptive neuro-fuzzy approach for solar radiation prediction in Nigeria. Renew Sust Energ Rev 51:1784–1791CrossRefGoogle Scholar
  43. 43.
    Chen J-L, Li G-S, Wu S-J (2013) Assessing the potential of support vector machine for estimating daily solar radiation using sunshine length. Energy Convers Manag 75:311–318CrossRefGoogle Scholar
  44. 44.
    Yang K, Koike T, Ye B (2006) Improving estimation of hourly, daily, and monthly solar radiation by importing global data sets. Agric Meteorol 137:43–55CrossRefGoogle Scholar
  45. 45.
    Pan T, Wu S, Dai E, Liu Y (2013) Estimating the daily global solar radiation spatial distribution from diurnal temperature ranges over the Tibetan Plateau in China. Appl Energy 107:384–393CrossRefGoogle Scholar
  46. 46.
    Tang W, Yang K, He J, Qin J (2010) Quality control and estimation of global solar radiation in China. Sol Energy 84:466–475CrossRefGoogle Scholar
  47. 47.
    Wan KKW, Tang HL, Yang L, Lam JC (2008) An analysis of thermal and solar zone radiation models using an Angstrom–Prescott equation and artificial neural networks. Energy 33:1115–1127CrossRefGoogle Scholar
  48. 48.
    Khorasanizadeh H, Mohammadi K (2013) Prediction of daily global solar radiation by day of the year in four cities located in the sunny regions of Iran. Energy Convers Manag 76:385–392CrossRefGoogle Scholar
  49. 49.
    Khorasanizadeh H, Mohammadi K, Jalilvand M (2014) A statistical comparative study to demonstrate the merit of day of the year-based models for estimation of horizontal global solar radiation. Energy Convers Manag 87:37–47CrossRefGoogle Scholar
  50. 50.
    Li H, Ma W, Lian Y, Wang X (2010) Estimating daily global solar radiation by day of year in China. Appl Energy 87:3011–3017CrossRefGoogle Scholar
  51. 51.
    Piri J, Shamshirband S, Petković D, Tong CW, Rehman MH (2015) Prediction of the solar radiation on the earth using support vector regression technique. Infrared Phys Technol 68:179–185CrossRefGoogle Scholar
  52. 52.
    Liu J, Liu J, Linderholm HW, Chen D, Yu Q, Wu D et al (2012) Observation and calculation of the solar radiation on the Tibetan Plateau. Energy Convers Manag 57:23–32CrossRefGoogle Scholar
  53. 53.
    Wan Nik WB, Ibrahim MZ, Samo KB, Muzathik AM (2012) Monthly mean hourly global solar radiation estimation. Sol Energy 86:379–387CrossRefGoogle Scholar
  54. 54.
    Lam JC, Wan KKW, Yang L (2008) Solar radiation modelling using ANNs for different climates in China. Energy Convers Manag 49:1080–1090CrossRefGoogle Scholar
  55. 55.
    Janjai S, Pankaew P, Laksanaboonsong J (2009) A model for calculating hourly global solar radiation from satellite data in the tropics. Appl Energy 86:1450–1457CrossRefGoogle Scholar
  56. 56.
    Yao W, Li Z, Xiu T, Lu Y, Li X (2015) New decomposition models to estimate hourly global solar radiation from the daily value. Sol Energy 120:87–99CrossRefGoogle Scholar
  57. 57.
    Fortin JG, Anctil F, Parent L-É, Bolinder MA (2008) Comparison of empirical daily surface incoming solar radiation models. Agric Meteorol 148:1332–1340CrossRefGoogle Scholar
  58. 58.
    Li M-F, Liu H-B, Guo P-T, Wu W (2010) Estimation of daily solar radiation from routinely observed meteorological data in Chongqing, China. Energy Convers Manag 51:2575–2579CrossRefGoogle Scholar
  59. 59.
    Chen RS, Lu SH, Kang ES et al (2006) Estimating daily global radiation using two types of revised models in China. Energy Convers Manag 47:865–878CrossRefGoogle Scholar
  60. 60.
    Yorukoglu M, Celik AN (2006) A critical review on the estimation of daily global solar radiation from sunshine length. Energy Convers Manag 47:2441–2450CrossRefGoogle Scholar
  61. 61.
    Almorox J, Hontoria C (2004) Global radiation estimation using sunshine length in Spain. Energy Convers Manag 45:1529–1535CrossRefGoogle Scholar
  62. 62.
  63. 63.
    Lewis G (1992) An empirical relation for estimating global irradiation for Tennessee, USA. Energy Convers Manag 32(12):1097–1099CrossRefGoogle Scholar
  64. 64.
    Oliveira AP, Escobedo JF, Machado AJ, Soares J (2002) Correlation models of diffuse solar-radiation applied to the city of São Paulo, Brazil. Appl Energy 71:59–73CrossRefGoogle Scholar
  65. 65.
    Chen JL, Liu HB, Wu W, Xie DT (2010) Estimation of monthly solar radiation from measured temperatures using support vector machines – a case study. Renew Energy 36:413–420CrossRefGoogle Scholar
  66. 66.
    Derse MS (2014) Batman’ın iklim koşullarında eğimli düzleme gelen güneş işınımının farklı açı değerlerinde belirlenmesi, Batman, pp 37–47Google Scholar
  67. 67.
    Miguel AD, Bilbao J, Aguiar R, Kambezidis H, Negro E (2001) Diffuse solar irradiation model evaluation in the North Mediterranean Belt area. Sol Energy 70:143–153CrossRefGoogle Scholar
  68. 68.
    Notton G, Poggi P, Cristofari C (2006) Predicting hourly solar irradiations on inclined surfaces based on the horizontal measurements: performances of the association of well-known mathematical models. Energy Convers Manag 47:1816–1829CrossRefGoogle Scholar
  69. 69.
    Erbs DG, Klein SA, Duffie JA (1982) Estimation of the diffuse radiation fraction for hourly, daily and monthly-average global radiation. Sol Energy 28(4):293–302CrossRefGoogle Scholar
  70. 70.
  71. 71.
  72. 72.
    National Renewable Energy Laboratory (2012) Research cell efficiency records. Retrieved 1 Sept 2012
  73. 73.
    Saehana S, Prasetyowati R, Hidayat MI, Noor FA, Abdullah(a) M, Khairurrijal (2010) Nanocomposite solar cells from “dirty” TiO2 nanoparticles. The third nanoscience and nanotechnology symposiumGoogle Scholar
  74. 74.
    Kim S, Fisher B, Eisler HJ, Bawendi M (2003) Type II quantum dots: CdTe/CdSe (core/shell) and CdSe/ZnTe (core/shell) heterostructures. J Am Chem Soc 125(38):11466–11467CrossRefGoogle Scholar
  75. 75.
    Milliron DJ, Hughes SM, Cui Y, Manna L, Li JB, Wang LW, Alivisados AP, Colloidal AP (2004) Nanocrystal heterostructures with linear and branched topology. Nature 30(6996):190–195CrossRefGoogle Scholar
  76. 76.
    Lee D, Choi Y, Yong K (2010) Morphology and crystal phase evolution of doctor-blade coated CuInSe2 thin films. J Cryst Growth 312:3665–3669CrossRefGoogle Scholar
  77. 77.
    Yu M, Long Y-Z, Sun B, Fan Z (2012) Recent advances in solar cells based on one-dimensional nanostructure arrays. Nanoscale 4:2783CrossRefGoogle Scholar
  78. 78.
    Zhang Y, Geng H, Zhou Z, Wu J, Wang Z, Zhang Y, Li Z, Zhang L, Yang Z, Hwang HL (2012) Development of inorganic solar cells by nanotechnology. Nano Micro Lett 4(2):124–134CrossRefGoogle Scholar
  79. 79.
    Zhu S, Xie G, Yang XJ, Cui Z (2013) A thick hierarchical rutile TiO2 nanomaterial with multilayered structure. Mater Res Bull 48:1961–1966CrossRefGoogle Scholar
  80. 80.
    Yu W, Xu B, Dong Q, Zhou Y, Zhang J, Tian W, Yang B (2010) A two-step method combining electrodepositing and spin-coating for solar cell processing. J Solid State Electrochem 14:1051–1056. Scholar
  81. 81.
    Rattanavoravipa T, Sagawa T, Yoshikawa S (2008) Photovoltaic performance of hybrid solar cell with TiO2 nanotubes arrays fabricated through liquid deposition using ZnO template. Sol Energy Mater Sol Cells 92:1445–1449CrossRefGoogle Scholar

Authors and Affiliations

  1. 1.Industrial Engineering DepartmentFirat UniversityElâzığTurkey
  2. 2.ElazigTurkey

Personalised recommendations