Zirconia-Based Nanocomposites

  • T. C. MokhenaEmail author
  • M. J. John
  • M. J. Mochane
  • A. Mtibe
Living reference work entry


Zirconia has recently become topical in the sphere of multifunctional materials for advanced applications. It has been employed in various applications such as structural ceramics, catalytic converters, oxygen sensors, nuclear industry, etc. It features high fracture toughness and high ionic conductivity and is chemically inert and biocompatible. In this chapter, the main focus is to provide insight into understanding the influence of zirconia chemical structure on the properties of its nanocomposites toward various advanced applications. Recent advances on the production of zirconia nanocomposites and properties are also highlighted. We conclude with ongoing challenges and future remarks.


Nanocomposites Zirconia Preparation Properties 



The authors acknowledge National Research Funding (NRF, South Africa) and Department of Science and Technology (DST, South Africa)-Biorefinery Program for funding


  1. Ahmed MA, Ebrahim MI (2014) Effect of zirconium oxide nano-fillers addition on the flexural strength, fracture toughness, and hardness of heat-polymerized acrylic resin. World J Nano Sci Eng 4(02):50CrossRefGoogle Scholar
  2. Akinci A, Sen S, Sen U (2014) Friction and wear behavior of zirconium oxide reinforced PMMA composites. Compos Part B 56:42–47CrossRefGoogle Scholar
  3. Asopa V, Suresh S, Khandelwal M, Sharma V, Asopa SS, Kaira LS (2015) A comparative evaluation of properties of zirconia reinforced high impact acrylic resin with that of high impact acrylic resin. Saudi J Dent Res 6(2):146–151CrossRefGoogle Scholar
  4. Auscher M-C, Fulchiron R, Périé T, Cassagnau P (2017) Morphological and rheological properties of zirconia filled polyethylene. Polymer 132:174–179CrossRefGoogle Scholar
  5. Ayad NM, Badawi MF, Fatah AA (2008) Effect of reinforcement of high-impact acrylic resin with zirconia on some physical and mechanical properties. Arch Oral Res 4(3)Google Scholar
  6. Bai L, Wyrwalski F, Machut C, Roussel P, Monflier E, Ponchel A (2013) Hydroxypropyl-β-cyclodextrin as a versatile additive for the formation of metastable tetragonal zirconia exhibiting high thermal stability. CrystEngComm 15(11):2076–2083CrossRefGoogle Scholar
  7. Bashir M, Riaz S, Naseem S (2015) Structural and mechanical properties of sucrose added zirconia thin films. Mater Today Proc 2(10, Part B):5777–5785. Scholar
  8. Bumajdad A, Nazeer AA, Al Sagheer F, Nahar S, Zaki MI (2018) Controlled synthesis of ZrO2 nanoparticles with tailored size, morphology and crystal phases via organic/inorganic hybrid films. Sci Rep 8(1):3695CrossRefGoogle Scholar
  9. Cao W, Kang J, Fan G, Yang L, Li F (2015) Fabrication of porous ZrO2 nanostructures with controlled crystalline phases and structures via a facile and cost-effective hydrothermal approach. Ind Eng Chem Res 54(51):12795–12804CrossRefGoogle Scholar
  10. Chen L, Mashimo T, Omurzak E, Okudera H, Iwamoto C, Yoshiasa A (2011) Pure tetragonal ZrO2 nanoparticles synthesized by pulsed plasma in liquid. J Phys Chem C 115(19):9370–9375CrossRefGoogle Scholar
  11. Esmaeili B, Chaouki J, Dubois C (2006) Polymerization compounding on the surface of zirconia nanoparticles. In: Macromolecular Symposia, vol 1. Wiley Online Library, pp 268–276Google Scholar
  12. Fangqiang F, Zhengbin X, Qingying L, Zhong L, Huanqin C (2013) ZrO2/PMMA nanocomposites: preparation and its dispersion in polymer matrix. Chin J Chem Eng 21(2):113–120CrossRefGoogle Scholar
  13. Fathima JB, Pugazhendhi A, Venis R (2017) Synthesis and characterization of ZrO2 nanoparticles-antimicrobial activity and their prospective role in dental care. Microb Pathog 110:245–251. Scholar
  14. Feldman D (2013) REVIEW polymer nanocomposites: flammability. J Macromol Sci A 50(12):1241–1249. Scholar
  15. Gad M, ArRejaie AS, Abdel-Halim MS, Rahoma A (2016) The reinforcement effect of nano-zirconia on the transverse strength of repaired acrylic denture base. Int J Dent 2016:1–6CrossRefGoogle Scholar
  16. Goto Y, Omata T, Otsuka-Yao-Matsuo S (2009) Extremely suppressed grain growth of Y2O3-stabilized zirconia nanocrystals synthesized by the nonhydrolytic sol–gel technique. J Electrochem Soc 156(1):K4–K9CrossRefGoogle Scholar
  17. Hameed HK, Rahman HA (2015) The effect of addition nano particle ZrO2 on some properties of autoclave processed heat cure acrylic denture base material. J Baghdad Coll Dent 27(1):32–39CrossRefGoogle Scholar
  18. Heshmatpour F, Aghakhanpour RB (2011) Synthesis and characterization of nanocrystalline zirconia powder by simple sol–gel method with glucose and fructose as organic additives. Powder Technol 205(1):193–200. Scholar
  19. Hu Y, Zhou S, Wu L (2009) Surface mechanical properties of transparent poly (methyl methacrylate)/zirconia nanocomposites prepared by in situ bulk polymerization. Polymer 50(15):3609–3616CrossRefGoogle Scholar
  20. Hu Y, Gu G, Zhou S, Wu L (2011) Preparation and properties of transparent PMMA/ZrO2 nanocomposites using 2-hydroxyethyl methacrylate as a coupling agent. Polymer 52(1):122–129CrossRefGoogle Scholar
  21. Hwangbo Y, Lee Y-I (2019) Facile synthesis of zirconia nanoparticles using a salt-assisted ultrasonic spray pyrolysis combined with a citrate precursor method. J Alloys Compd 771:821–826CrossRefGoogle Scholar
  22. Ihab N (2011) Evaluation the effect of modified nano-fillers addition on some properties of heat cured acrylic denture base material. J Baghdad Coll Dent 23(3):23–29Google Scholar
  23. Imai Y, Terahara A, Hakuta Y, Matsui K, Hayashi H, Ueno N (2009) Transparent poly(bisphenol A carbonate)-based nanocomposites with high refractive index nanoparticles. Eur Polym J 45(3):630–638. Scholar
  24. Jayakumar S, Ananthapadmanabhan P, Thiyagarajan T, Perumal K, Mishra S, Suresh G, Su L, Tok A (2013) Nanosize stabilization of cubic and tetragonal phases in reactive plasma synthesized zirconia powders. Mater Chem Phys 140(1):176–182CrossRefGoogle Scholar
  25. Jongsomjit B, Panpranot J, Praserthdam P (2007) Effect of nanoscale SiO2 and ZrO2 as the fillers on the microstructure of LLDPE nanocomposites synthesized via in situ polymerization with zirconocene. Mater Lett 61(6):1376–1379CrossRefGoogle Scholar
  26. Lee W, Gil SC, Kim H, Han K, Lee H (2016) Partially sulfonated Poly(arylene ether sulfone)/organically modified metal oxide nanoparticle composite membranes for proton exchange membrane for direct methanol fuel cell. Compos Sci Technol 129:101–107CrossRefGoogle Scholar
  27. Machmudah S, Widiyastuti W, Prastuti OP, Nurtono T, Winardi S, Wahyudiono KH, Goto M (2014) Synthesis of ZrO2 nanoparticles by hydrothermal treatment. In: AIP conference proceedings, vol 1. AIP, pp 166–172Google Scholar
  28. Mallakpour S, Zeraatpisheh F (2014) Novel flame retardant zirconia-reinforced nanocomposites containing chlorinated poly(amide-imide): synthesis and morphology probe. J Exp Nanosci 9(10):1035–1050. Scholar
  29. Mochane M, Mokhena T, Mokhothu T, Mtibe A, Sadiku E, Ray S, Ibrahim I, Daramola O (2019) Recent progress on natural fiber hybrid composites for advanced applications: a review. Express Polym Lett 13(2):159–198CrossRefGoogle Scholar
  30. Motaung T, Luyt A, Saladino M, Chillura Martino D, Caponetti E (2012) Morphology, mechanical properties and thermal degradation kinetics of zirconia-PMMA composites prepared by melt compounding. Express Polym Lett 6:871–881Google Scholar
  31. Motaung T, Saladino M, Luyt A, Martino DC (2013) Influence of the modification, induced by zirconia nanoparticles, on the structure and properties of polycarbonate. Eur Polym J 49(8):2022–2030CrossRefGoogle Scholar
  32. Nourani-Vatani M, Ganjali M, Solati-Hashtjin M, Zarrintaj P, Reza Saeb M (2018) Zirconium-based hybrid coatings: a versatile strategy for biomedical engineering applications. Mater Today Proc 5(7, Part 3):15524–15531. Scholar
  33. Reyes-Acosta M, Torres-Huerta AM, Dominguez-Crespo MA, Flores-Vela AI, Dorantes-Rosales HJ, Ramírez-Meneses E (2015) Influence of ZrO2 nanoparticles and thermal treatment on the properties of PMMA/ZrO2 hybrid coatings. J Alloys Compd 643:S150–S158CrossRefGoogle Scholar
  34. Shi F, Li Y, Wang H, Zhang Q (2012) Fabrication of well-dispersive yttrium-stabilized cubic zirconia nanoparticles via vapor phase hydrolysis. Prog Nat Sci Mater Int 22(1):15–20CrossRefGoogle Scholar
  35. Srdić VV, Winterer M (2003) Aluminum-doped zirconia nanopowders: chemical vapor synthesis and structural analysis by Rietveld refinement of X-ray diffraction data. Chem Mater 15(13):2668–2674CrossRefGoogle Scholar
  36. Taguchi M, Nakane T, Matsushita A, Sakka Y, Uchikoshi T, Funazukuri T, Naka T (2014) One-pot synthesis of monoclinic ZrO2 nanocrystals under subcritical hydrothermal conditions. J Supercrit Fluids 85:57–61. Scholar
  37. Taguchi M, Matsushita A, Uchikoshi T, Sakka Y, Takami S, Funazukuri T, Naka T (2015) Influence of the crystal structure on the physical properties of monoclinic ZrO2 nanocrystals. Nano-Struct Nano-Objects 1:1–6. Scholar
  38. Tyagi B, Sidhpuria K, Shaik B, Jasra RV (2006) Synthesis of nanocrystalline zirconia using sol−gel and precipitation techniques. Ind Eng Chem Res 45(25):8643–8650CrossRefGoogle Scholar
  39. Wang H, Xu P, Zhong W, Shen L, Du Q (2005) Transparent poly(methyl methacrylate)/silica/zirconia nanocomposites with excellent thermal stabilities. Polym Degrad Stab 87(2):319–327. Scholar
  40. Wang Y, Zhang D, Shi L, Li L, Zhang J (2008) Novel transparent ternary nanocomposite films of trialkoxysilane-capped poly(methyl methacrylate)/zirconia/titania with incorporating networks. Mater Chem Phys 110(2):463–470. Scholar
  41. Wang X, Wu L, Li J (2010a) Influence of nanozirconia on the thermal stability of poly(methyl methacrylate) prepared by in situ bulk polymerization. J Appl Polym Sci 117(1):163–170Google Scholar
  42. Wang X, Song Y, Bao J (2010b) Synergistic effects of ZrO2 or B2O3 on flame-retarded poly (butyl methacrylate) with tricresylphosphate. Fire Mater 34(7):357–366CrossRefGoogle Scholar
  43. Wang X, Wu L, Li J (2011) Synergistic flame retarded poly (methyl methacrylate) by nano-ZrO2 and triphenylphosphate. J Therm Anal Calorim 103(2):741–746CrossRefGoogle Scholar
  44. Xu K, Zhou S, Wu L (2009) Effect of highly dispersible zirconia nanoparticles on the properties of UV-curable poly(urethane-acrylate) coatings. J Mater Sci 44(6):1613–1621. Scholar
  45. Yang X, Zhou D, Ma X, Wang X, Xu J, Chen G, Hou X, Liu X, Gao X (2018) Synthesis of dopant-free tetragonal zirconia nano-powders with aqueous precursor and their optical properties. Mater Res Express 6(1):015041CrossRefGoogle Scholar
  46. Yu W, Wang X, Tang Q, Guo M, Zhao J (2014) Reinforcement of denture base PMMA with ZrO2 nanotubes. J Mech Behav Biomed Mater 32:192–197CrossRefGoogle Scholar
  47. Zhang Y, Jin X, Rong Y, Hsu T, Jiang D, Shi J (2006) The size dependence of structural stability in nano-sized ZrO2 particles. Mater Sci Eng A 438:399–402CrossRefGoogle Scholar
  48. Zhang R, Liu H, He D (2012) Pure monoclinic ZrO2 prepared by hydrothermal method for isosynthesis. Catal Commun 26:244–247CrossRefGoogle Scholar
  49. Zhang S, Lv Y, Li J, Liang S, Liu Z (2017) Mechanical enhancement of zirconia reinforced polyimine nanocomposites. J Appl Polym Sci 134(32):45183CrossRefGoogle Scholar
  50. Zhong Y, Xie G, Sui G, Yang R (2011) Poly (ether ether ketone) composites reinforced by short carbon fibers and zirconium dioxide nanoparticles: mechanical properties and sliding wear behavior with water lubrication. J Appl Polym Sci 119(3):1711–1720CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • T. C. Mokhena
    • 1
    • 2
    Email author
  • M. J. John
    • 1
    • 2
  • M. J. Mochane
    • 3
  • A. Mtibe
    • 2
  1. 1.Department of ChemistryNelson Mandela UniversityPort ElizabethSouth Africa
  2. 2.CSIR Materials Science and Manufacturing, Polymers and CompositesPort ElizabethSouth Africa
  3. 3.Department of Life SciencesCentral University of Technology, Free StateBloemfonteinSouth Africa

Personalised recommendations