Advertisement

(Bio)degradable Polymer Nanocomposites for Environmental Protection

  • Marta MusiołEmail author
  • Sebastian Jurczyk
  • Wanda Sikorska
  • Joanna Rydz
Living reference work entry

Abstract

Plastic materials are often used in many aspects of our lives. Currently, most of them do not degrade, causing serious environmental problems. (Bio)degradable polymers, a unique category of materials, can help to solve the growing environmental concern. Environmentally friendly polymer nanocomposites are the next generation of sustainable, recyclable, and eco-friendly materials that combine performance and environmental compatibility. Morphological and structural transformations resulting from the degradation of the material have a significant impact on the properties of the polymer materials used in various applications; therefore it is important to increase the applicability of polymers while minimizing the potential failure caused by degradation during use. Over the last few years, there has been a significant progress in the range of polymer composites both commercially available and under development. Nanotechnology offers new opportunities to improve the performance of polymers, enabling the development of new polymeric materials with improved mechanical, thermal, electrical, and other properties. Using different polymer matrices and nanofillers and/or additives can prepare many different nanocomposites with tailor-made properties.

This review focused on (bio)degradable polymer nanocomposites with approved or potential applications in the fields of environmental protection. It covers a wide range of research on polymer-based nanocomposites, their design, synthesis, characterization, applications, and degradation as well as future trends.

Keywords

(bio)degradable polymers Bionanocomposites Ecofrindly materials Composting 

Notes

Acknowledgments

This work was supported by the National Science Centre, Poland (NCN SONATA 11 project no. 2016/21/D/ST8/01993, “Multifaceted studies on the (bio)degradability profile of composites of selected biodegradable polymers with natural fillers and bacteriocins”).

References

  1. Adeosun SO, Lawal GI, Balogun SA et al (2012) Review of green polymer nanocomposites. J Miner Mater Charact Eng 11(4):385–416.  https://doi.org/10.4236/jmmce.2012.114028 CrossRefGoogle Scholar
  2. Akpan EI, Shen X, Wetzel B, Friedrich K (2019) Design and synthesis of polymer nanocomposites. In: Pielichowski K, Majka TM (eds) Polymer composites with functionalized nanoparticles, synthesis, properties, and applications. A volume in micro and nano technologies. Elsevier, Amsterdam, pp 47–83.  https://doi.org/10.1016/C2017-0-00517-7 CrossRefGoogle Scholar
  3. Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng 28(1–2):1–63.  https://doi.org/10.1016/S0927-796X(00)00012-7 CrossRefGoogle Scholar
  4. Allaoui A, Bai S, Cheng HM et al (2002) Mechanical and electrical properties of a MWNT/epoxy composite. Compos Sci Technol 62(15):1993–1998.  https://doi.org/10.1016/S0266-3538(02)00129-X CrossRefGoogle Scholar
  5. Al-Saleh MH, Sundararaj U (2011) Review of the mechanical properties of carbon nanofiber/polymer composites. Compos Part A 42:2126–2142.  https://doi.org/10.1016/j.compositesa.2011.08.005 CrossRefGoogle Scholar
  6. Ambika PPS (2018) Nanotechnology: greener approach for sustainable environment. In: Hussain CM, Mishra AK (eds) Nanotechnology in environmental science. Wiley-VCH Verlag, Weinheim.  https://doi.org/10.1002/9783527808854.ch25 CrossRefGoogle Scholar
  7. Anandhan S, Bandyopadhyay S (2011) Polymer nanocomposites: from synthesis to applications. In: Cuppoletti J (ed) Nanocomposites and polymers with analytical methods. IntechOpen, Rijeka, pp 3–28.  https://doi.org/10.5772/17039 CrossRefGoogle Scholar
  8. Armentano I, Puglia D, Luzi F et al (2018) Nanocomposites based on biodegradable polymers. Materials 11(5):795.  https://doi.org/10.3390/ma11050795 CrossRefGoogle Scholar
  9. Arora B, Bhatia R, Attri P (2018) Bionanocomposites: green materials for a sustainable future. In: Hussain CM, Mishra AK (eds) New polymer nanocomposites for environmental remediation. Elsevier, pp 699–712.  https://doi.org/10.1016/B978-0-12-811033-1.00027-5 CrossRefGoogle Scholar
  10. Assouline E, Pohl S, Fulchiron R et al (2000) The kinetics of α and β transcrystallization in fibre-reinforced polypropylene. Polymer 41(21):7843–7854.  https://doi.org/10.1016/S0032-3861(00)00113-0 CrossRefGoogle Scholar
  11. Avella M, De Vlieger JJ, Errico ME et al (2005) Biodegradable stach/clay nanocomposite films for food packaging applications. Food Chem 93(3):467–474.  https://doi.org/10.1016/j.foodchem.2004.10.024 CrossRefGoogle Scholar
  12. Azeredo HMC, Mattoso LHC, Bustillos RJA et al (2009) Nanocellulose reinforced chitosan composite films as affected by nanofiller loading and plasticizer content. J Food Sci 75(1):1–7.  https://doi.org/10.1111/j.1750-3841.2009.01386.x CrossRefGoogle Scholar
  13. Battista OA, Erdi NZ, Ferraro CF, Karasinski FJ (1967) Colloidal macromolecular phenomena. Part II. Novel microcrystals of polymers. J Appl Polym Sci 11(4):481–498.  https://doi.org/10.1002/app.1967.070110401 CrossRefGoogle Scholar
  14. Biopolymers with advanced functionalities for high performance applications. http://ec.europa.eu/research/participants/portal/desktop/en/opportunities/h2020/topics/bbi-2016-r07.html. Accessed 10 Apr 2019
  15. Cabedo L, Feijoo JL, Villanueva MP et al (2006) Optimization of biodegradable nanocomposites based on aPLA/PCL blends for food packaging application. Macromol Symp 233(1):191–197.  https://doi.org/10.1002/masy.200690017 CrossRefGoogle Scholar
  16. Correa AC, Teixeira EM, Pessan LA et al (2010) Cellulose nanofibers from curaua fibers. Cellulose 17(6):1183–1192.  https://doi.org/10.1007/s10570-010-9453-3 CrossRefGoogle Scholar
  17. Corrêa MCS, Branciforti MC, Pollet EJ et al (2012) Elaboration and characterization of nano-biocomposites based on plasticized poly(hydroxybutyrate-co-hydroxyvalerate) with organo-modified montmorillonite. J Polym Environ 20(2):283–290.  https://doi.org/10.1007/s10924-011-0379-0 CrossRefGoogle Scholar
  18. Cury Camargo PH, Gundappa Satyanarayana K, Wypych F (2009) Nanocomposites: synthesis, structure, properties and new application opportunities. Mater Res 12(1):1–39.  https://doi.org/10.1590/S1516-14392009000100002 CrossRefGoogle Scholar
  19. Dadashi S, Mousavi SM, Emam-Djomeh Z et al (2014) Functional properties of biodegradable nanocomposites from poly(lactic acid) (PLA). Int J Nanosci Nanotechnol 10(4):245–256Google Scholar
  20. De Campos A, de Sena Neto AR, Rodrigues VB et al (2017) Bionanocomposites produced from cassava starch and oil palm mesocarp cellulose nanowhiskers. Carbohydr Polym 175:330–336.  https://doi.org/10.1016/j.carbpol.2017.07.080 CrossRefGoogle Scholar
  21. Dias RCM, Goes AM, Serakides R et al (2010) Porous biodegradable polyurethane nanocomposites: preparation, characterization and biocompatibility test. Mater Res 13(2):211–218.  https://doi.org/10.1590/S1516-14392010000200015 CrossRefGoogle Scholar
  22. Dinca I, Ban C, Stefan A et al (2012) Nanocomposites as advanced materials for aerospace industry. INCAS Bull 4(4):73–83.  https://doi.org/10.13111/2066-8201.2012.4.4.6 CrossRefGoogle Scholar
  23. Eichhorn SJ, Dufresene A, Aranguren Ms T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33.  https://doi.org/10.1007/s10853-009-3874-0 CrossRefGoogle Scholar
  24. Elsevier HTTP. Polymer nanocomposites. https://www.sciencedirect.com/topics/materials-science/polymer-nanocomposites. Accessed 03 Dec 2018
  25. Feller J-F, Kumar B, Castro M (2011) Conductive biopolymer nanocomposites for sensors. In: Mittal V (ed) Nanocomposites with biodegradable polymers: synthesis, properties, and future perspectives. Oxford University Press, Oxford.  https://doi.org/10.1093/acprof:oso/9780199581924.003.0015 CrossRefGoogle Scholar
  26. Finegan IC, Tibbetts GG, Gibson RF (2003) Modeling and characterization of damping in carbon nanofiber/polypropylene composites. Compos Sci Technol 63(11):1629–1635.  https://doi.org/10.1016/S0266-3538(03)00054-X CrossRefGoogle Scholar
  27. Fukushima K, Abbate C, Tabuani D et al (2009) Biodegradation of poly(lactic acid) and its nanocomposites. Polym Degrad Stab 94(10):1646–1655.  https://doi.org/10.1016/j.polymdegradstab.2009.07.001 CrossRefGoogle Scholar
  28. Garcés JM, Moll DJ, Bicerano J et al (2000) Polymeric nanocomposites for automotive applications. Adv Mater 12(23):1835–1839.  https://doi.org/10.1002/1521-4095(200012)12:23<1835::AID-ADMA1835>3.0.CO;2-T CrossRefGoogle Scholar
  29. Geim AK (2009) Graphene: status and prospects. Science 324(5934):1530–1534.  https://doi.org/10.1126/science.1158877 CrossRefGoogle Scholar
  30. Glasser WG, Taib R, Jain RK et al (1999) Fiber-reinforced cellulosic thermoplastic composites. J Appl Polym Sci 73(7):1329–1340.  https://doi.org/10.1002/(SICI)1097-4628(19990815)73:7<1329::AID-APP26>3.0.CO;2-Q CrossRefGoogle Scholar
  31. Hergeth WD, Steinau UJ, Bittrich HJ, Simon G, Schmutzler K (1989) Polymerization in the presence of seeds. Part IV: Emulsion polymers containing inorganic filler particles. Polymer 30(2):254–258.  https://doi.org/10.1016/0032-3861(89)90114-6 CrossRefGoogle Scholar
  32. Huang M, Yu J, Ma X (2006) High mechanical performance MMT-urea and formamide-plasticized thermoplastic cornstarch biodegradable nanocomposites. Carbohydr Polym 63(3):393–399.  https://doi.org/10.1016/j.carbpol.2005.09.006 CrossRefGoogle Scholar
  33. Huang P, Wu M, Kuga S et al (2012a) One-step dispersion of cellulose nanofibers by mechano-chemical estrification in an organic solvent. ChemSusChem 5(12):2319–2322.  https://doi.org/10.1002/cssc.201200492 CrossRefGoogle Scholar
  34. Huang T-C, Yeh J-M, Lai C-Y (2012b) Polymer nanocomposite coatings. In: Gao F (ed) Advances in polymer nanocomposites, types and applications. Woodhead Publishing, Philadelphia, pp 605–638.  https://doi.org/10.1533/9780857096241.3.605 CrossRefGoogle Scholar
  35. Huang P, Zhao Y, Kuga S et al (2016) A versatile method for producing functionalized cellolose nanofibers and their application. Nanoscale 8:3753–3759.  https://doi.org/10.1039/c5nr08179c CrossRefGoogle Scholar
  36. Hung W-I, Chang K-C, Chang Y-H et al (2011) Advanced anticorrosive coatings prepared from polymer-clay nanocomposite materials. In: Reddy B (ed) Advances in nanocomposites – Synthesis, characterization and industrial applications. InTech, Rijeka, pp 561–582.  https://doi.org/10.5772/15355 CrossRefGoogle Scholar
  37. Ifuku S (2014) Chitin and chitosan nanofibers: preparation and chemical modifications. Molecules 19(11):18367–18380.  https://doi.org/10.3390/molecules191118367 CrossRefGoogle Scholar
  38. Ifuku S, Saimoto H (2012) Chitin nanofibers: preparations, modifications and applications. Nanoscale 4(11):3308–3318.  https://doi.org/10.1039/C2NR30383C CrossRefGoogle Scholar
  39. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58.  https://doi.org/10.1038/354056a0 CrossRefGoogle Scholar
  40. Ioelovich M, Figovsky O (2013) Green nano-protective coating. SITA J 15(2):63–67Google Scholar
  41. Katheria AD, Singh E, Kumar R et al (2016) Polymer nanocomposite: an overview. Int J Innov Res Sci Eng Technol 5(2):1960–1968.  https://doi.org/10.15680/IJIRSET.2016.0502142 CrossRefGoogle Scholar
  42. Keshk SMAS (2014) Bacterial cellulose production and its industrial production. J Bioprocess Biotech 4(2):150.  https://doi.org/10.4172/2155-9821.1000150 CrossRefGoogle Scholar
  43. Kim B, Kim GH, Lee MH et al (2015) Application of biodegradable polymer to construction materials. Int J Eng Innov Technol 4(9):1–7Google Scholar
  44. Klemm D, Heublein B, Fink HP et al (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393.  https://doi.org/10.1002/anie.200460587 CrossRefGoogle Scholar
  45. Królikowski W, Rosłaniec Z (2004) Polymer nanocomposites. Kompozyty (Composites) 4:1–15Google Scholar
  46. Kumar AP, Depan D, Tomer NS et al (2009) Nanoscale particles for polymer degradation and stabilization: trends and future perspectives. Prog Polym Sci 34(6):479–515.  https://doi.org/10.1016/j.progpolymsci.2009.01.002 CrossRefGoogle Scholar
  47. Kumar S, Raj S, Jain S, Chatterje K (2016) Multifunctional biodegradable polymer nanocomposite incorporating graphene-silver hybrid for biomedical applications. Mater Des 108(C):319–332.  https://doi.org/10.1016/j.matdes.2016.06.107 CrossRefGoogle Scholar
  48. Lee SR, Park HM, Lim H et al (2002) Microstructure, tensile properties, and biodegradability of aliphatic polyester/clay nanocomposites. Polymer 43(8):2495–2500.  https://doi.org/10.1016/S0032-3861(02)00012-5 CrossRefGoogle Scholar
  49. Lim ST, Hyun YH, Choi HJ et al (2002) Synthetic biodegradable aliphatic polyester/montmorillonite nanocomposites. Chem Mater 14(4):1839–1844.  https://doi.org/10.1021/cm010377j CrossRefGoogle Scholar
  50. Mago G, Sinha Ray S, Shofner ML et al (2014) Polymer nanocomposite processing, characterization and applications 2013. J Nanomater 2014:403492.  https://doi.org/10.1155/2014/403492 CrossRefGoogle Scholar
  51. Maiti P, Batt CA, Giannelis EP (2003) Renewable plastics: synthesis and properties of PHB nanocomposites. Polym Mater Sci Eng 88:58–59Google Scholar
  52. Maiti P, Batt CA, Giannelis EP (2007) New biodegradable polyhydroxybutyrate/layered silicate nanocomposites. Biomacromolecules 8(11):3393–3400.  https://doi.org/10.1021/bm700500t CrossRefGoogle Scholar
  53. Mattsson J, Forrest JA, Börjesson L (2000) Quantifying glass transition behavior in ultrathin free-standing polymer films. Phys Rev E 62(4):5187–5200.  https://doi.org/10.1103/PhysRevE.62.5187 CrossRefGoogle Scholar
  54. Mina MF, Beg MDH, Islam MR et al (2013) Characterization of biodegradable nanocomposites with poly(lactic acid) and multi-walled carbon nanotubes. Int Sch Sci Res Innov 7(1):74–79.  https://doi.org/10.5281/zenodo.1081613 CrossRefGoogle Scholar
  55. Mohanty S, Nayak SK (2012) Biodegradable nanocomposites of poly(butylene adipate-co-terephtalate) (PBAT) and organically modified layered silicates. J Polym Environ 20(1):195–207.  https://doi.org/10.1007/s10924-011-0408-z CrossRefGoogle Scholar
  56. Morgan AB (2007) Polymer-clay nanocomposites: design and application of multi-functional materials. Mater Matt 2(1):20–23Google Scholar
  57. Müller K, Bugnicourt E, Latorre M et al (2017) Review on the processing and properties of polymer nanocomposites and nanocoatings and their applications in the packaging, automotive and solar energy fields. Nano 7(4):E74.  https://doi.org/10.3390/nano7040074 CrossRefGoogle Scholar
  58. Nanda A, DuttaGupta M, Banthia AK (2002) Sulfonated polybutadiene ionomer templates nanonickel composite. Mater Lett 52(3):203–205.  https://doi.org/10.1016/S0167-577X(01)00394-9 CrossRefGoogle Scholar
  59. Njuguna J, Pielichowski K, Desai S (2008) Nanofiller-reinforced polymer nanocomposites. Polym Adv Technol 19(8):947–959.  https://doi.org/10.1002/pat.1074 CrossRefGoogle Scholar
  60. Njuguna J, Pielichowski K, Fan J (2012) Polymer nanocomposites for aerospace applications. In: Gao F (ed) Advances in polymer nanocomposites, types and applications. Woodhead Publishing, Philadelphia, pp 472–539.  https://doi.org/10.1533/9780857096241.3.472 CrossRefGoogle Scholar
  61. Nobuta K, Teramura H, Ito H et al (2016) Characterization of cellulose nanofibers sheets from different refining process. Cellulose 23(1):403–414.  https://doi.org/10.1007/s10570-015-0792-y CrossRefGoogle Scholar
  62. Okamoto K, Ray SS, Okamoto M (2003) New poly(butylene succinate)/layered silicate nanocomposites. 2. Effect of organically modified layered silicates on morphology, materials properties, melt rheology, and biodegradability. J Polym Sci Part B Polym Phys 41(24):3160–3170.  https://doi.org/10.1002/polb.10708 CrossRefGoogle Scholar
  63. Oliveira M, Machado AV (2013) Preparation of polymer-based nanocomposites by different routes, preparation of polymer-based nanocomposites by different routes. In: Xiaoing W (ed) Nanocomposites: synthesis, characterization and applications. NOVA Science Publishers, Haupaggue, p 21Google Scholar
  64. Ollier RP, Lanfranconi MR, Alvarez VA et al (2018) Polycaprolactone/organoclay biodegradable nanocomposites: dissimilar tendencies of different clay modifiers. Adv Mater Lett 9(11):796–804.  https://doi.org/10.5185/amlett.2018.1828 CrossRefGoogle Scholar
  65. Orts WJ, Shey J, Imam SH et al (2005) Application of cellulose microfibrils in polymer nanocomposites. J Polym Environ 13(4):301–306.  https://doi.org/10.1007/s10924-005-5514-3 CrossRefGoogle Scholar
  66. Pandey JK, Reddy KR, Kumar AP et al (2005) An overview on the degradability of polymer nanocomposites. Polym Degrad Stab 88(2):234–250.  https://doi.org/10.1016/j.polymdegradstab.2004.09.013 CrossRefGoogle Scholar
  67. Patel V, Mahajan Y (2012) Polymer nanocomposites drive opportunities in the automotive sector. Nanowerk. https://www.nanowerk.com/spotlight/spotid=23934.php. Accessed 10 Jan 2019
  68. Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49(15):3187–3204.  https://doi.org/10.1016/j.polymer.2008.04.017 CrossRefGoogle Scholar
  69. Paul MA, Delcourt C, Alexandre M et al (2005) Polylactide/montmorillonite nanocomposites: study of the hydrolytic degradation. Polym Degrad Stab 87(3):535–542.  https://doi.org/10.1016/j.polymdegradstab.2004.10.011 CrossRefGoogle Scholar
  70. Pei A, Butchosa N, Berglund LA et al (2013) Surface quaternized cellulose nanofibrils with high water absorbency and adsorption capacity for anionic dyes. Soft Matter 9(6):2047–2055.  https://doi.org/10.1039/c2sm27344f CrossRefGoogle Scholar
  71. Piekarska K, Sowinski P, Piotrowska E et al (2016) Structure and properties of hybrid PLA nanocomposites with inorganic nanofillers and cellulose fibers. Compos Part A 82:34–41.  https://doi.org/10.1016/j.compositesa.2015.11.019 CrossRefGoogle Scholar
  72. Qian D, Dickey EC, Andrews R et al (2000) Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl Phys Lett 76:2868–2870.  https://doi.org/10.1063/1.126500 CrossRefGoogle Scholar
  73. Qiu K, Netravali AN (2013) Halloysite nanotube reinforced biodegradable nanocomposites using noncrosslinked and malonic acid crosslinked polyvinyl alcohol. Polym Compos 34(5):799–809.  https://doi.org/10.1002/pc.22482 CrossRefGoogle Scholar
  74. Rathod VT, Kumar JS, Jain A (2017) Polymer and ceramic nanocomposites for aerospace applications. Appl Nanosci 7(8):519548.  https://doi.org/10.1007/s13204-017-0592-9 CrossRefGoogle Scholar
  75. Ray SS, Bousmina M (2005) Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog Mater Sci 50(8):962–1079.  https://doi.org/10.1016/j.pmatsci.2005.05.002 CrossRefGoogle Scholar
  76. Ray SS, Okamoto K, Maiti P et al (2002a) New poly(butylene succinate)/layered silicate nanocomposites: preparation and mechanical properties. J Nanosci Nanotechnol 2(2):171–176.  https://doi.org/10.1166/jnn.2002.086 CrossRefGoogle Scholar
  77. Ray SS, Yamada K, Okamoto M et al (2002b) New polylactide/layered silicate nanocomposite: a novel biodegradable material. Nano Lett 2(10):1093–1096.  https://doi.org/10.1021/nl0202152 CrossRefGoogle Scholar
  78. Ray SS, Maiti P, Okamoto M (2002c) New polylactide/layered silicate nanocomposites. 1. Preparation, characterization, and properties. Marcomolecules 35(8):3104–3110.  https://doi.org/10.1021/ma011613e CrossRefGoogle Scholar
  79. Ray SS, Okamoto K, Okamoto M (2003a) Structure-property relationship in biodegradable poly(butylene succinate)/layered silicate nanocomposites. Macromolecules 36(7):2355–2367.  https://doi.org/10.1021/ma021728y CrossRefGoogle Scholar
  80. Ray SS, Yamada K, Okamoto M et al (2003b) Biodegradable polylactide/montmorillonite nanocomposites. J Nanosci Nanotechnol 3(6):503–510.  https://doi.org/10.1166/jnn.2003.220 CrossRefGoogle Scholar
  81. Ray SS, Yamada K, Okamoto M et al (2003c) New polylactide-layered silicate nanocomposites. 2. Concurrent improvements of materials properties, biodegradability and melt rheology. Polymer 44(3):857–866.  https://doi.org/10.1016/S0032-3861(02)00818-2 CrossRefGoogle Scholar
  82. Ray SS, Yamada K, Okamoto M et al (2003d) New polylactide/layered silicate nanocomposites. 3. High-performance biodegradable materials. Chem Mater 15(7):1456–1465.  https://doi.org/10.1021/cm020953r CrossRefGoogle Scholar
  83. Rhim JW, Hong SI, Park HM et al (2006) Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. J Agric Food Chem 54(16):5814–5822.  https://doi.org/10.1021/jf060658h CrossRefGoogle Scholar
  84. Rhim JW, Par HM, Ha CS (2013) Bio-nanocomposites for food packaging applications. Prog Polym Sci 38(10–11):1629–1652.  https://doi.org/10.1016/j.progpolymsci.2013.05.008 CrossRefGoogle Scholar
  85. Richard P, Prasse T, Cavaille JY et al (2003) Reinforcement of rubbery epoxy by carbon nanofibres. Mater Sci Eng A 352(1–2):344–348.  https://doi.org/10.1016/S0921-5093(02)00895-X CrossRefGoogle Scholar
  86. Rodriguez NLG, Thielemans W, Dufresne A (2006) Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites. Cellulose 13(3):261–270.  https://doi.org/10.1007/s10570-005-9039-7 CrossRefGoogle Scholar
  87. Rostami A, Nazockdast H, Karimi M (2016) Graphene induced microstructural changes of PLA/MWCNT biodegradable nanocomposites: rheological, morphological, thermal and electrical properties. RSC Adv 55(6):49747–49759.  https://doi.org/10.1039/C6RA08345E CrossRefGoogle Scholar
  88. Saito T, Nishiyama Y, Putaux JL et al (2006) Homogeneous suspensions of individualized microfibrils form TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7(6):1687–1691.  https://doi.org/10.1021/bm060154s CrossRefGoogle Scholar
  89. Salaberria AM, Labidi J, Fernandes SCM (2014) Chitin nanocrystals and nanofibers as nano-sized fillers into thermoplastic starch-based biocomposites processed by melt-mixing. Chem Eng J 256:356–364.  https://doi.org/10.1016/j.cej.2014.07.009 CrossRefGoogle Scholar
  90. Salaberria AM, Diaz RH, Labidi J et al (2015) Preparing valuable renewable nanocomposite films based exclusively on oceanic biomass – Chitin nanofillers and chitosan. J React Funct Polym 89:31–39.  https://doi.org/10.1016/j.reactfunctpolym.2015.03.003 CrossRefGoogle Scholar
  91. Samir M, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6(2):612–626.  https://doi.org/10.1021/bm0493685 CrossRefGoogle Scholar
  92. Schadler LS (2003) Polymer-based and polymer-filled nanocomposites. In: Ajayan PM, Schadler LS, Braun PV (eds) Nanocomposite science and technology. Wiley-VCH, Weinheim, pp 77–154.  https://doi.org/10.1002/3527602127 CrossRefGoogle Scholar
  93. Schaefer DW, Justice RS (2007) How nano are nanocomposites? Macromolecules 40(24):8501–8517.  https://doi.org/10.1021/ma070356w CrossRefGoogle Scholar
  94. Shameli K, Ahmad MB, Yunus WMZW et al (2010) Green synthesis of silver/monmorylonite/chitosan bionanocomposites using the UV irradiation method and evaluation of antibacterial activity. Int J Nanomedicine 5:875–887.  https://doi.org/10.2147/IJN.S13632 CrossRefGoogle Scholar
  95. Sikorska W, Musioł M, Zawidlak-Węgrzyńska B et al (2018) Compostable polymeric ecomaterials: environment-friendly waste management alternative to landfills. In: Martínez LMT, Kharissova OV, Kharisov BI (eds) Handbook of ecomaterials. Springer, Cham, pp 1–31.  https://doi.org/10.1007/978-3-319-48281-1_36-1 CrossRefGoogle Scholar
  96. Singh AA, Afrin S, Karim Z (2017) Green composites: versatile material for future. In: Jawaid M, Salit M, Alothman O (eds) Green biocomposites. Green energy and technology. Springer, Cham, pp 29–44.  https://doi.org/10.1007/978-3-319-49382-4_2 CrossRefGoogle Scholar
  97. Someya Y, Kondo N, Shibata M (2007) Biodegradation of poly(butylene adipate-co-butylene terephthalate)/layered-silicate nanocomposites. J Appl Polym Sci 106(2):730–736.  https://doi.org/10.1002/app.24174 CrossRefGoogle Scholar
  98. Soni B, Hassan EB, Mahmoud B (2015) Chemical isolation and characterization of different cellulose nanofibers from cotton stalks. Carbohydr Polym 134:581–589.  https://doi.org/10.1016/j.carbpol.2015.08.031 CrossRefGoogle Scholar
  99. Spadaccio C, Rainer A, Trombetta M et al (2009) Poly-L-lactic Acid/hydroxyapatite elecrtospun nanocomposites induce chondrogenic differentiation of human msc. Ann Biomed Eng 37(7):1376–1389.  https://doi.org/10.1007/s10439-009-9704-3 CrossRefGoogle Scholar
  100. SpecialChem (2018) World’s first biobased circular car developed using PLA from Total Corbion PLA. https://omnexus.specialchem.com/news/industry-news/total-corbion-pla-world-first-biobased-circular-car-000215330. Accessed 11 Jan 2019
  101. Supova M, Martynkova G, Simha G et al (2011) Effect of nanofillers dispersion in polymer matrices: a review. Sci Adv Mater 3(1):1–25.  https://doi.org/10.1166/sam.2011.1136 CrossRefGoogle Scholar
  102. Tang C, Chen N, Zhang Q et al (2009) Preparation and properties of chitosan nanocomposites with nanofillers of different dimensions. Polym Degrad Stab 94(1):124–131.  https://doi.org/10.1016/j.polymdegradstab.2008.09.008 CrossRefGoogle Scholar
  103. Tang G, Wang X, Xing W et al (2012) Thermal degradation and flame retardance of biobased polylactide composites based on aluminum hypophosphite. Ind Eng Chem Res 51(37):12009–12016.  https://doi.org/10.1021/ie3008133 CrossRefGoogle Scholar
  104. Tang C, Chen N, Hu X (2017) Conducting polymer nanocomposites: recent developments and future prospects. In: Kumar V et al (eds) Conducting polymer hybrids. Springer, Cham, pp 1–44.  https://doi.org/10.1007/978-3-319-46458-9_1 CrossRefGoogle Scholar
  105. Teixeira EM, Bondanica TJ, Teodoro KRB et al (2011) Sugarcane bagasse whiskers: extraction and characterizations. Ind Crop Prod 33(1):63–66.  https://doi.org/10.1016/j.indcrop.2010.08.009 CrossRefGoogle Scholar
  106. Tidjani A, Wald O, Pohl M-M et al (2003) Polypropylene-graft-maleic anhydride-nanocomposites: I – characterization and thermal stability of nanocomposites produced under nitrogen and in air. Polym Degrad Stab 82(1):133–140.  https://doi.org/10.1016/S0141-3910(03)00174-5 CrossRefGoogle Scholar
  107. Wang N, Ding E, Cheng R (2007) Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups. Polymer 48(12):3486–3493.  https://doi.org/10.1016/j.polymer.2007.03.062 CrossRefGoogle Scholar
  108. Wang G, Yu D, Kelkar AD, Zhang L (2017) Electrospun nanofiber: emerging reinforcing filler in polymer matrix composite materials. Prog Polym Sci 75:73–107.  https://doi.org/10.1016/j.progpolymsci.2017.08.002 CrossRefGoogle Scholar
  109. Wilson R, Joy J, George G, Anuraj V (2017) Nanocellulose: a novel support for water purification. In: Kharisov CMHB (ed) Advanced environmental analysis-application of nanomaterials. The Royal Society of Chemistry, Cambridge.  https://doi.org/10.1039/9781782623625-00456 CrossRefGoogle Scholar
  110. Włodarczyk J, Sikorska W, Rydz J et al (2018) 3D processing of PHA containing (bio)degradable materials. In: Koller M (ed) Current advances in biopolymer processing and characterization. Biomaterials – properties, production and devices series. Nova Science Publishers, New York, pp 121–168Google Scholar
  111. Wu CHS, Liao HT (2007) Study of the preparation and characterization of biodegradable polylactide/multi-walled carbon nanotubes nanocomposites. Polymer 48(15):4449–4458.  https://doi.org/10.1016/j.polymer.2007.06.004 CrossRefGoogle Scholar
  112. Xing ZC, Chae WP, Baek JY et al (2010) In vitro assessment of antibacterial activity and cytocompatibility of silver-containing PHBV nanofibrous scaffolds for tissue engineering. Biomacromolecules 11(5):1248–1253.  https://doi.org/10.1021/bm1000372 CrossRefGoogle Scholar
  113. Zehetmeyer G, Soares RMD, Brandelli A et al (2012) Evaluation of polypropylene/montmorillonite nanocomposites as food packaging material. Polym Bull 68(8):2199–2217.  https://doi.org/10.1007/s00289-012-0722-1 CrossRefGoogle Scholar
  114. Zheng Y, Zheng Y, Ning R (2003) Effects of nanoparticles SiO2 on the performance of nanocomposites. Mater Lett 57(19):2940–2944.  https://doi.org/10.1016/S0167-577X(02)01401-5 CrossRefGoogle Scholar
  115. Zhou Q, Xanthos M (2008) Nanoclay and crystallinity effects on the hydrolytic degradation of polymers. Polym Degrad Stab 93(8):1450–1459.  https://doi.org/10.1016/j.polymdegradstab.2008.05.014 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Marta Musioł
    • 1
    Email author
  • Sebastian Jurczyk
    • 2
  • Wanda Sikorska
    • 1
  • Joanna Rydz
    • 1
  1. 1.Centre of Polymer and Carbon Materials Polish Academy of SciencesZabrzePoland
  2. 2.Institute for Engineering of Polymer Materials and Dyes, Paint and Plastics Department in GliwiceGliwicePoland

Personalised recommendations