Encyclopedia of Solid Earth Geophysics

Living Edition
| Editors: Harsh K. Gupta

Gravity Data, Advanced Processing

  • Christopher J. SwainEmail author
  • Jonathan F. Kirby
Living reference work entry
DOI: https://doi.org/10.1007/978-3-030-10475-7_89-1



Spectral analysis

Estimation and analysis of global frequency content of a signal, assumed stationary, most often using the Fast Fourier Transform (FFT).

Potential field transformations

Process of converting gravity (or magnetic) survey data into a new and physically meaningful form to facilitate its geological interpretation.

Euler and Werner deconvolution

Methods for automatically estimating depths to sources from gravity (or magnetic) survey data.

Wavelet analysis

Estimation and analysis of local frequency content of a non-stationary signal, using a wavelet transform (WT).


The use of spectral analysis to interpret gravity anomalies goes back to the 1930s, but the modern approach in terms of the Fourier transform (FT) was developed in the 1960s and 1970s. Most of the methods are equally applicable to magnetic data, which is their more common area of use because of the huge volume of aeromagnetic...

This is a preview of subscription content, log in to check access.


  1. Addison PS (2002) The illustrated wavelet transform handbook. Institute of Physics, BristolCrossRefGoogle Scholar
  2. Antoine J-P, Murenzi R, Vandergheynst P, Ali ST (2004) Two-dimensional wavelets and their relatives. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  3. Blakely RJ (1995) Potential theory in gravity and magnetic applications. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  4. Chambodut A, Panet I, Mandea M, Diament M, Holschneider M, Jamet O (2005) Wavelet frames: an alternative to spherical harmonic representation of potential fields. Geophys J Int 163:875–899CrossRefGoogle Scholar
  5. Dransfield MH, Lee JB (2004) The Falcon® airborne gravity gradiometer survey systems. In: Lane RJL (ed) Airborne Gravity 2004 – abstracts from the ASEG-PESA airborne gravity 2004 workshop: Geoscience Australia Record 2004/18, pp 15–19Google Scholar
  6. FitzGerald D, Reid A, McInerney P (2004) New discrimination techniques for Euler deconvolution. Comput Geosci 30:461–469CrossRefGoogle Scholar
  7. Foufoula-Georgiou E, Kumar P (eds) (1994) Wavelets in geophysics. Academic, San DiegoGoogle Scholar
  8. Grant FS, West GF (1965) Interpretation theory in applied geophysics. McGraw Hill, New YorkGoogle Scholar
  9. Grossman A, Morlet J (1984) Decomposition of hardy functions into square integrable wavelets of constant shape. SIAM J Math Anal 15:723–736CrossRefGoogle Scholar
  10. Hornby P, Boschetti F, Horowitz FG (1999) Analysis of potential field data in the wavelet domain. Geophys J Int 137:175–196CrossRefGoogle Scholar
  11. Jacobsen BH (1987) A case for upward continuation as a standard separation filter for potential field maps. Geophysics 52:1138–1148CrossRefGoogle Scholar
  12. Keller W (2004) Wavelets in geodesy and geodynamics. de Gruyter, BerlinCrossRefGoogle Scholar
  13. Kirby JF (2005) Which wavelet best reproduces the Fourier power spectrum? Comput Geosci 31:846–864CrossRefGoogle Scholar
  14. Kirby JF, Swain CJ (2009) A reassessment of spectral Te estimation in continental interiors: the case of North America. J Geophys Res 114:B08401.  https://doi.org/10.1029/ 2009JB006356CrossRefGoogle Scholar
  15. Klees R, Haagmans R (eds) (2000) Wavelets in the geosciences. Springer, BerlinGoogle Scholar
  16. Kumar P, Foufoula-Georgiou E (1997) Wavelet analysis for geophysical applications. Rev Geophys 35:385–412CrossRefGoogle Scholar
  17. Li X (2006) Understanding 3D analytic signal amplitude. Geophysics 71:L13–L16.  https://doi.org/10.1190/1.2184367CrossRefGoogle Scholar
  18. Mikhailov V, Pajot G, Diament M, Price A (2007) Tensor deconvolution: a method to locate equivalent sources from full tensor gravity data. Geophysics 72:161–169.  https://doi.org/10.1190/ 1.2749317CrossRefGoogle Scholar
  19. Moreau F, Gibert D, Holschneider M, Saracco G (1997) Wavelet analysis of potential fields. Inverse Prob 13:165–178CrossRefGoogle Scholar
  20. Mushayandebvu MF, Lesur V, Reid AB, Fairhead JD (2001) Magnetic source parameters of two-dimensional structures using extended Euler deconvolution. Geophysics 66:814–823CrossRefGoogle Scholar
  21. Nabighian MN (1984) Toward a three-dimensional automatic interpretation of potential field data via generalized Hilbert transforms: fundamental relations. Geophysics 49:780–786CrossRefGoogle Scholar
  22. Nabighian MN et al (2005) Historical development of the gravity method in exploration. Geophysics 70:63ND–89ND.  https://doi.org/10.1190/1.2133785CrossRefGoogle Scholar
  23. Nabighian MN, Hansen RO (2001) Unification of Euler and Werner deconvolution in three dimensions via the generalised Hilbert transform. Geophysics 66:1805–1810CrossRefGoogle Scholar
  24. Nettleton LL (1976) Gravity and magnetics in oil prospecting. McGraw-Hill, New YorkGoogle Scholar
  25. Panet I, Chambodut A, Diament M, Holschneider M, Jamet O (2006) New insights on intraplate volcanism in French Polynesia from wavelet analysis of GRACE, CHAMP, and sea surface data. J Geophys Res 111:B09403.  https://doi.org/10.1029/2005JB004141CrossRefGoogle Scholar
  26. Parker RL (1972) The rapid calculation of potential anomalies. Geophys J R Astron Soc 31:447–455CrossRefGoogle Scholar
  27. Reid AB, Allsop JM, Granser H (1990) Magnetic interpretation in three dimensions using Euler deconvolution. Geophysics 55:80–91CrossRefGoogle Scholar
  28. Ridsdill-Smith TA, Dentith MC (1999) The wavelet transform in aeromagnetic processing. Geophysics 64:1003–1013CrossRefGoogle Scholar
  29. Spector A, Grant FS (1970) Statistical models for interpreting aeromagnetic data. Geophysics 35:293–302CrossRefGoogle Scholar
  30. Thompson DT (1982) EULDPH: a new technique for making computer-assisted depth estimates from magnetic data. Geophysics 47:31–37CrossRefGoogle Scholar
  31. Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 779:61–78CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.School of Earth and Planetary SciencesCurtin UniversityPerthAustralia