Encyclopedia of Solid Earth Geophysics

Living Edition
| Editors: Harsh K. Gupta

Heat Flow, Seafloor: Methods and Observations

  • Earl E. DavisEmail author
  • Andrew T. Fisher
Living reference work entry
DOI: https://doi.org/10.1007/978-3-030-10475-7_65-1


Conductive heat flux

The rate of heat transfer through a substance per unit area. The conductive heat flux, commonly defined in one dimension, is the product of the thermal gradient and thermal conductivity, with SI units of W m−2. Heat flux is referred to in historical and some current oceanographic literature as “heat flow,” but in precise physical terms, heat flux equals heat flow density.

Advective heat flux

The rate of heat transfer per unit area as a consequence of material motion. The advective heat flux is commonly defined as the product of the temperature, heat capacity, and material velocity, with SI units of W m−2.

Thermal conductivity

The constant of proportionality that relates the thermal gradient to the conductive heat flux, indicating the ability of a medium to transfer heat by conduction. SI units are in W m−1 K−1.

Hydrothermal circulation

Large-scale pore-fluid convection driven by geothermal buoyancy, with flow being strongly influenced by permeability...

This is a preview of subscription content, log in to check access.


  1. Anderson RN, Skilbeck JN (1980) Oceanic heat flow. In: Emiliani C (ed) The Sea, vol 7. Wiley Interscience, New York, pp 489–523Google Scholar
  2. Andreassen K, Mienert J, Bryn P, Singh SC (2000) A double gas-hydrate related bottom simulating reflector at the Norwegian continental margin. In gas hydrates: challenges for the future. Ann N Y Acad Sci, New York 912:126–135CrossRefGoogle Scholar
  3. Becker K, Fisher AT, Tsuji T (2013) New packer experiments and borehole logs in upper oceanic crust: evidence for ridge-parallel consistency in crustal hydrogeologic properties. Geochem Geophys Geosyst 14(8).  https://doi.org/10.1002/ggge.20201CrossRefGoogle Scholar
  4. Bullard EC (1954) The flow of heat through the floor of the Atlantic Ocean. Proc R Astrono Soc London A 222:408–429CrossRefGoogle Scholar
  5. Coggon RM, Rehkämpera M, Atteck C, Teagle DAH, Teagle AJC, Cooper MJ (2014) Controls on thallium uptake during hydrothermal alteration of the upper ocean crust. Geochim Cosmochim Acta 144:25–42.  https://doi.org/10.1016/j.gca.2014.09.001CrossRefGoogle Scholar
  6. Davies JH, Davies DR (2010) Earth’s surface heat flux. Solid Earth 1:5–24CrossRefGoogle Scholar
  7. Davis EE (1988) Oceanic heat flow density. In: Haenel R, Rybach L, Stegena L (eds) Handbook of terrestrial heat-flow density determination. Kluwer Academic Publishers, Dordrecht, pp 223–260CrossRefGoogle Scholar
  8. Davis EE, Becker K, Pettigrew T, Carson B (1992) CORK: a hydrologic seal and downhole observatory for deep-sea boreholes. Proc Ocean Drill Program Initial Rep 139:45–53Google Scholar
  9. Davis EE, Wang K, He J, Chapman DS, Villinger H, Rosenberger A (1997a) An unequivocal case for high Nusselt number hydrothermal convection in sediment-buried igneous oceanic crust. Earth Planet Sci Lett 146:137–150CrossRefGoogle Scholar
  10. Davis EE, Villinger H, Macdonald RD, Meldrum RD, Grigel J (1997b) A robust rapid-response probe for measuring bottom-hole temperatures in deep-ocean boreholes. Mar Geophys Res 19:267–281CrossRefGoogle Scholar
  11. Davis EE, Chapman DS, Wang K, Villinger H, Fisher AT, Robinson SW, Grigel J, Pribnow D, Stein JS, Becker K (1999) Regional heat flow variations on the sedimented Juan de Fuca Ridge eastern flank: constraints on lithospheric cooling and lateral hydrothermal heat transport. J Geophys Res 104:17,675–17,688CrossRefGoogle Scholar
  12. Davis EE, Wang K, Becker K, Thomson RE, Yashayaev I (2003) Deep-ocean temperature variations and implications for errors in seafloor heat flow determinations. J Geophys Res 108:2034.  https://doi.org/10.1029/2001JB001695CrossRefGoogle Scholar
  13. Dickens GR, Qinby-Hunt MS (1997) Methane hydrate stability in pore water: a simple theoretical approach for geophysical applications. J Geophys Res 102:773–783CrossRefGoogle Scholar
  14. Elder JW (1965) Physical processes in geothermal areas. In: Lee WHK (ed) Terrestrial heat flow. Am Geophys Union, Washington, DC, pp 211–239Google Scholar
  15. Elderfield H, Schultz A (1996) Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean. Annu Rev Earth Planet Sci 24:191–224CrossRefGoogle Scholar
  16. Embley RW, Hobart MA, Anderson RN, Abbott D (1983) Anomalous heat flow in the northwest Atlantic: a case for continued hydrothermal circulation in 80-M.y. crust. J Geophys Res 88:1,067–1,074CrossRefGoogle Scholar
  17. Fisher AT, Becker K (1995) The correlation between heat flow and basement relief: observational and numerical examples and implications for upper crustal permeability. J Geophys Res 100:12,641–12,657CrossRefGoogle Scholar
  18. Fisher AT, Harris RN (2010) Using seafloor heat flow as a tracer to map subseafloor fluid flow in the oceanic crust. Geofluids 10:142–160Google Scholar
  19. Fisher AT, Von Herzen RP (2005) Models of hydrothermal circulation within 106 Ma seafloor: constraints on the vigor of fluid circulation and crustal properties below the Madeira Abyssal Plain. Geochem Geophys Geosyst 6.  https://doi.org/10.1029/2005GC001013.CrossRefGoogle Scholar
  20. Fisher AT, Wheat CG (2010) Seamounts as conduits for massive fluid, heat, and solute fluxes on ridge flanks. Oceanography 23:74–87CrossRefGoogle Scholar
  21. Fisher AT, Villinger H, Harris RN, Von Herzen RP, Pfender M, Müller M, Grevemeyer I, Kaul N, Wheat CG (2002) Comment on “Deep-penetration heat flow probes raise questions about interpretations from shorter probes,” by Géli et al., 2001. EOS Trans Am Geophys Union 82(29):317, 320, Eos Trans Am Geophys Union 83(18):196Google Scholar
  22. Fisher AT, Stein CA, Harris RN, Wang K, Silver EA, Pfender M, Hutnak M, Cherkaoui A, Bodzin R, Villinger H (2003) Abrupt thermal transition reveals hydrothermal boundary and role of seamounts within the Cocos plate. Geophys Res Lett 30(11):1550.  https://doi.org/10.1029/2002GL016766.CrossRefGoogle Scholar
  23. Fisher AT, Alt JC, Bach W (2014) Hydrogeologic properties, processes and alteration in the igneous ocean crust. In: Stein R, Blackman D, Inagaki F, Larsen H-C (eds) Earth and life processes discovered from subseafloor environment – a decade of science achieved by the Integrated Ocean Drilling Program (IODP). Elsevier, Amsterdam/New York, pp 507–551Google Scholar
  24. Harris RN, Chapman DS (2004) Deep-seated oceanic heat flux, heat deficits, and hydrothermal circulation. In: Davis EE, Elderfield H (eds) Hydrogeology of the oceanic lithosphere. Cambridge University Press, Cambridge, pp 311–336Google Scholar
  25. Harris RN, Grevemeyer I, Ranero CR, Villinger H, Barckhausen U, Henke T, Mueller C, Neben S (2010) Thermal regime of the Costa Rican convergent margin: 1. Along-strike variations in heat flow from probe measurements and estimated from bottom-simulating reflectors. Geochem Geophys Geosyst 11:Q12S28.  https://doi.org/10.1029/2010GC003272CrossRefGoogle Scholar
  26. Harris RN, Spinelli GA, Fisher AT (2017) Hydrothermal circulation and the thermal structure of shallow subduction zones. Geosphere 13:1–20CrossRefGoogle Scholar
  27. Hasterok D, Chapman DS, Davis EE (2011) Oceanic heat flow: implications for global heat loss. Earth Planet Sci Lett 311:386–395.  https://doi.org/10.1016/j.epsl.2011.09.044CrossRefGoogle Scholar
  28. Heesemann M, Villinger H, Fisher AT, Trehu AM, Witte S (2006) Testing and deployment of the new APC3 tool to determine in situ temperature while piston coring. In: Collett TS, Riedel M, Malone MJ (eds) Proceedings of the integrated ocean drilling program expedition 311. Integrated Ocean Drilling Program Management International, Inc., College StationGoogle Scholar
  29. Horai K, Von Herzen RP (1985) Measurement of heat flow on Leg 86 of the Deep Sea Drilling Project. Initial Reports, DSDP 86:759–777Google Scholar
  30. Hyndman RD (1984) Review of Deep Sea Drilling Project geothermal measurements through Leg 71. Initial Reports, DSDP 78B:813–823Google Scholar
  31. Hyndman RD, Wang K (1993) Thermal constraints on the zone of major thrust earthquake failure: the Cascadia subduction zone. J Geophys Res 98:2039–2060CrossRefGoogle Scholar
  32. Hyndman RD, Davis EE, Wright JA (1979) The measurement of marine geothermal heat flow by a multipenetration probe with digital acoustic telemetry and in situ thermal conductivity. Mar Geophys Res 4:181–205CrossRefGoogle Scholar
  33. Jaupart C, Labrosse S, Mareschal J-C (2007) Temperatures, heat, and energy in the mantle of the Earth. Treatise on Geophysics 7:253–303CrossRefGoogle Scholar
  34. Langseth MG, LePichon X, Ewing M (1966) Crustal structure of the midocean ridges, 5, heat flow through the Atlantic Ocean floor and convection currents. J Geophys Res 71:5321–5355CrossRefGoogle Scholar
  35. Lauer RM, Saffer DM, Harris RN (2017) Links between clay transformation and earthquakes along the Costa Rican subduction margin. Geophys Res Lett 44:7725–7732.  https://doi.org/10.1002/2017GL073744CrossRefGoogle Scholar
  36. Lee WHK, Uyeda S (1965) Review of heat flow data. In: Lee WHK (ed) Terrestrial heat flow. Geophysical monograph, vol 8. American Geophysical Union, Washington, DC, pp 87–190CrossRefGoogle Scholar
  37. Lister CRB (1972) On the thermal balance of a mid-ocean ridge. Geophys J R Astron Soc 26:515–535CrossRefGoogle Scholar
  38. Lister CRB (1979) The pulse-probe method of conductivity measurement. Geophys J R Astron Soc 57:451–461CrossRefGoogle Scholar
  39. Lister CRB, Sclater JG, Davis EE, Villinger H, Nagihara S (1990) Heat flow maintained in ocean basins of great age: investigations in the north-equatorial west Pacific. Geophys J Int 102:603–630CrossRefGoogle Scholar
  40. Mottl MJ, Wheat CG (1994) Hydrothermal circulation through mid-ocean ridge flanks: fluxes of heat and magnesium. Geochim Cosmochim Acta 58:2,225–2,237CrossRefGoogle Scholar
  41. Neumann F, Negrete-Aranda R, Harris RN, Contreras J, Sclater JG, González-Fernández A (2017) Systematic heat flow measurements across the Wagner Basin, northern gulf of California. Earth Planet Sci Lett 479:340–353CrossRefGoogle Scholar
  42. Newman AV, Schwartz SY, Gonzalez V, DeShon HR, Protti JM, Dorman LM (2002) Along-strike variability in the seismogenic zone below Nicoya Peninsula, Costa Rica. Geophys Res Lett 29.  https://doi.org/10.1029/2002GL015409Google Scholar
  43. Orcutt BN, Sylvan JB, Rogers DR, Delaney J, Lee RW, Girguis PR (2015) Carbon fixation by basalt-hosted microbial communities. Front Microbiol 6.  https://doi.org/10.3389/fmicb.2015.00904
  44. Parsons B (1982) Causes and consequences of the relation between area and age of the ocean floor. J Geophys Res 87:289–303CrossRefGoogle Scholar
  45. Petterson H (1949) Exploring the bed of the ocean. Nature 4168:468–470CrossRefGoogle Scholar
  46. Revelle RR, Maxwell AE (1952) Heat flow through the floor of the eastern North Pacific Ocean. Nature 170:199–202CrossRefGoogle Scholar
  47. Ruppel C, Dickens GR, Castellini DG, Gilhooly W, Lizarralde D (2005) Heat and salt inhibition of gas hydrate formation in the northern Gulf of Mexico. Geophys Res Lett 32:L04605CrossRefGoogle Scholar
  48. Sclater JG, Crowe J, Anderson RN (1976) On the reliability of ocean heat flow averages. J Geophys Res 81:2,997–3,006CrossRefGoogle Scholar
  49. Sclater JG, Jaupart C, Galson D (1980) The heat flow through oceanic and continental crust and the heat loss of the earth. Rev Geophys 18:269–311CrossRefGoogle Scholar
  50. Spinelli GA, Saffer D (2004) Along-strike variations in underthrust sediment dewatering on the Nicoya margin, Costa Rica related to the updip limit of seismicity. Geophys Res Lett 31.  https://doi.org/10.1029/2003GL018863
  51. Stein JS, Fisher AT (2001) Multiple scales of hydrothermal circulation in Middle Valley, northern Juan de Fuca Ridge: physical constraints and geologic models. J Geophys Res 106(B5):8563–8580CrossRefGoogle Scholar
  52. Stein CA, Stein S (1994) Constraints on hydrothermal heat flux through the oceanic lithosphere from global heat flow. J Geophys Res 99:3,081–3,095CrossRefGoogle Scholar
  53. Uyeda S, Horai K (1980) Heat flow measurements on Deep Sea Drilling Project Leg 60. In: Initial reports, DSDP, vol 60. U. S. Govt. Printing Office, Washington, DC, pp 789–800Google Scholar
  54. Villinger H, Davis EE (1987) A new reduction algorithm for marine heat flow measurements. J Geophys Res 92:12,846–12,856CrossRefGoogle Scholar
  55. Villinger H, Grevemeyer I, Kaul N, Hauschild J, Pfender M (2002) Hydrothermal heat flux through aged oceanic crust: where does the heat escape? Earth Planet Sci Lett 202:159–170CrossRefGoogle Scholar
  56. Villinger H, Trehu AM, Grevemeyer I (2010) Seafloor marine heat flux measurements and estimation of heat flux from seismic observations of bottom simulating reflectors. In: Riedel M, Willoughby EC, Chopra S (eds) Geophysical characterization of gas hydrates. Society of Exploration Geophysicists, Tulsa, pp 279–300CrossRefGoogle Scholar
  57. Von Herzen RP (2004) Geothermal evidence for continuing hydrothermal circulation in older (> 60 M.y.) ocean crust. In: Davis EE, Elderfield H (eds) Hydrogeology of the oceanic lithosphere. Cambridge University Press, Cambridge, pp 414–447Google Scholar
  58. Von Herzen RP, Uyeda S (1963) Heat flow through the eastern Pacific Ocean floor. J Geophys Res 68:4,219–4,250CrossRefGoogle Scholar
  59. Wei M, Sandwell D (2006) Estimates of heat flow from Cenozoic seafloor using global depth and age data. Tectonophysics 417:325–335CrossRefGoogle Scholar
  60. Wheat CG, Mottl MJ, Fisher AT, Kadko D, Davis EE, Baker E (2004) Heat and fluid flow through a basaltic outcrop on a ridge flank. Geochem Geophys Geosyst 5(12).  https://doi.org/10.1029/2004GC000700CrossRefGoogle Scholar
  61. Williams DL, Von Herzen RP (1974) Heat loss from the earth: new estimate. Geology 2:327–330CrossRefGoogle Scholar
  62. Williams DL, Von Herzen RP, Sclater JG, Anderson RN (1974) The Galapagos spreading center: lithospheric cooling and hydrothermal circulation. Geophys J R Astron Soc 38:587–608CrossRefGoogle Scholar
  63. Wright JA, Louden KE (1989) Handbook of seafloor heat flow. CRC Press, Boca Raton. 498 ppGoogle Scholar
  64. Yamano M, Uyeda S, Aoki Y, Shipley TH (1982) Estimates of heat flow derived from gas hydrates. Geology 10:339–343CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Pacific Geoscience CentreGeological Survey of CanadaSidneyCanada
  2. 2.Department of Earth and Planetary SciencesUniversity of California at Santa CruzSanta CruzUSA