Encyclopedia of Solid Earth Geophysics

Living Edition
| Editors: Harsh K. Gupta

Deep Seismic Reflection and Refraction Profiling

  • Kabir Roy ChowdhuryEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-030-10475-7_226-1
  • 4 Downloads

Definition

Deep Seismic Reflection and Refraction Profiling

Classically, multichannel recording, along a measurement line, of (mostly) seismic P-waves, artificially generated using large energy sources, after these have traveled deep thru the earth’s crust (and upper mantle). Later developments include multicomponent recording enabling analysis of shear waves. Deep reflection profiling is mostly done using vibrators (on land) or air guns (in water) at near-vertical distances (8–12 km) to image the structure of the crust and upper mantle. Wide-angle reflection/refraction profiling uses large explosions and recording distances (200–300 km), primarily to obtain velocity information down to the upper mantle.

Synonyms

Active source seismology; Controlled source seismology; Deep seismic sounding; Explosion seismology; Wide-angle reflection/refraction profiling

Notational Notes

Below, all capitals (e.g., DSRRP) will be used for acronyms and italicized phrases within double quotes (e.g., “Seis...

This is a preview of subscription content, log in to check access.

References

  1. Aki K, Richards PG (2002) Quantitative seismology, 2nd edn. University Science Books, Mill Valley, USAGoogle Scholar
  2. ANCORP Working Group (2003) Seismic imaging of a convergent continental margin and plateau in the central Andes (Andean Continental Research Project 1996 (ANCORP‘96)). J Geophys Res 108(B7):2328Google Scholar
  3. BABEL Working Group (1990) Evidence for early Proterozoic plate tectonics from seismic reflection profiles in the Baltic shield. Nature 348:34–38CrossRefGoogle Scholar
  4. BABEL Working Group (1993) Deep seismic reflection/refraction interpretation of critical structure along BABEL profiles A and B in the southern Baltic Sea. Geophys J Int 112:325–343CrossRefGoogle Scholar
  5. Barazangi M, Brown L (eds) (1986a) Reflection seismology: a global perspective. Geodynamic series, vol 13. American Geophysical Union, Washington, DCGoogle Scholar
  6. Barazangi M, Brown L (eds) (1986b) Reflection seismology: the continental crust. Geodynamic series, vol 14. American Geophysical Union, Washington, DCGoogle Scholar
  7. Behm M, Cheng F, Patterson A, Soreghan G (2019) Passive processing of active nodal seismic data: estimation of Vp/Vs ratios to characterize structure and hydrology of an alpine valley infill. Solid Earth 10:1337–1354CrossRefGoogle Scholar
  8. Benz HM, Huger JD, Leith WS, Mooney WD, Solodilov LN, Egorkin AV, Ryaboy VS (1992) Deep seismic sounding in Northern Eurasia. EOS Trans Am Geophys Union 73:297–300CrossRefGoogle Scholar
  9. Berckhemer H (1969) Direct evidence for the composition of the lower crust and the Moho. Tectonophysics 8:97–105CrossRefGoogle Scholar
  10. Brewer JA, Matthews DH, Warner MR, Hall J, Smythe DK, Whittington RJ (1983) BIRPS deep seismic reflection studies of the British Caledonides. Nature 305:206–210CrossRefGoogle Scholar
  11. Brewer JA, Smythe DK (1984) MOIST and the continuity of crustal reflector geometry along the Caledonian-Appalachian orogen. J Geol Soc Lond 141:105–120CrossRefGoogle Scholar
  12. Brittan J, Jones I (2019) FWI evolution – from a monolith to a toolkit. Lead Edge 38:179–184CrossRefGoogle Scholar
  13. Calvert AJ, Sawyer EW, Davis WJ, Ludden JN (1995) Archaean subduction inferred from seismic images of a mantle suture in the Superior Province. Nature 375:670–674CrossRefGoogle Scholar
  14. Carbonell R, Gallart J, Tome M (eds) (2000) Deep seismic profiling of the continents and their margins, Tectonophysics 329Google Scholar
  15. Carbonell R, Sallares V, Ranero CR, Booth-Rea G (eds) (2016) Special issue on deep seismix, Tectonophysics 689Google Scholar
  16. Carpentier SFA, Roy Chowdhury K (2007) Underestimation of scale lengths in stochastic fields and their seismic response: a quantification exercise. Geophys J Int 169:547–562CrossRefGoogle Scholar
  17. Carpentier SFA, Roy Chowdhury K, Hurich CA (2011) Mapping correlation lengths of lower crustal heterogeneities together with their maximum-likelihood uncertainties. Tectonophysics 508(1–4): 117–130.  https://doi.org/10.1016/j.tecto.2010.07.008CrossRefGoogle Scholar
  18. Chadwick RA, Pharaoh TC (1998) The seismic reflection Moho beneath the United Kingdom and adjacent areas. Tectonophysics 299:255–279CrossRefGoogle Scholar
  19. Clowes RM, Green AG (eds) (1994) Seismic reflection probing of the continents and their margins, Tectonophysics 232Google Scholar
  20. Clowes RM, Ellis RM, Hajnal Z, Jones IF (1983) Seismic reflections from subducting lithosphere? Nature 03:668–670CrossRefGoogle Scholar
  21. Cook FA, Vasudevan K (2006) Reprocessing and enhanced interpretation of the initial COCORP Southern Appalachian traverse. Tectonophysics 420:161–174CrossRefGoogle Scholar
  22. Curtis A, Gerstoft P, Sato H, Snieder R, Wapenaar K (2006) Seismic interferometry – turning noise into signal. The Leading Edge 25(9): 1082–1092CrossRefGoogle Scholar
  23. Davey FJ, Jones L (eds) (2004) Special issue – Continental lithosphere, Tectonophysics 388Google Scholar
  24. Diaconescu CA, Knapp JH, Brown LD, Steer DN, Stiller M (1998) Precambrian Moho offset and tectonic stability of the East European platform from the URSEIS deep seismic profile. Geology 26: 211–214CrossRefGoogle Scholar
  25. Dohr G (1957) Ein Beitrag der Reflexionsseismiek zur Erforschung des tieferen Untergrundes. Geol Rundsch 46:17–26CrossRefGoogle Scholar
  26. Dohr G, Fuchs K (1967) Statistical evaluation of deep crustal reflections in Germany. Geophysics 32(6):951–967CrossRefGoogle Scholar
  27. Dong S, Li T, Lü Q, Gao R, Yang J, Chen X, Wei W (2013) Progress in deep lithospheric exploration of the continental China: a review of the SinoProbe. Tectonophysics 606:1–13CrossRefGoogle Scholar
  28. Douma H, Roy Chowdhury K (2001) Amplitude effects due to multi-scale impedance contrasts and multiple scattering: implications for Ivrea-type continental lower crust. Geophys J Int 147(2):435–448CrossRefGoogle Scholar
  29. EarthScope. Exploring the structure and evolution of the North American continent. http://www.earthscope.org
  30. Eccles JD, White RS, Christie PAF (2011) The composition and structure of volcanic rifted continental margins in the North Atlantic: further insight from shear-waves. Tectonophysics 508:22–33CrossRefGoogle Scholar
  31. Emmerich H, Zwielich J, Muller G (1993) Migration of synthetic seismograms for crustal structures with random heterogeneities. Geophys J Int 113:225–238CrossRefGoogle Scholar
  32. Emmermann R, Lauterjung J (1997) The German Continental Deep Drilling Program KTB: overview and major results. J Geophys Res 102(B8):18,179–18,201CrossRefGoogle Scholar
  33. Finlayson DM (2010a) BIRPS startup: deep seismic profiling along the MOIST line on the continental shelf around the British Isles, 1981. http://www.earthscrust.org.au/science/startups/birps-su.html
  34. Finlayson DM (2010b) COCORP startup: the first deep seismic profiling of the continental crust in USA, Hardeman County, Texas, 1975. http://www.earthscrust.org.au/science/startups/cocorp-su.html
  35. Flack C, Warner M (1990) Three-dimensional mapping of seismic reflections from the crust and upper mantle, northwest of Scotland. Tectonophysics 173:469–481CrossRefGoogle Scholar
  36. Gamburtsev GA (1952) Deep seismic soundings of the earth’s crust. Doklady Akad Nauk SSSR 87:943–945Google Scholar
  37. Gebrande H, Castellarin A, Luschen E, Neubauer F, Nicolich R (eds) (2006) TRANSALP – a transect through a young collisional orogen, Tectonophysics 414Google Scholar
  38. Gibbs AK (1986) Seismic reflection profiles of precambrian crust: a qualitative assessment. In: Barazangi M, Brown L (eds) Reflection seismology: the continental crust. Geodynamic series, vol 14. American Geophysical Union, Washington, DC, pp 95–106CrossRefGoogle Scholar
  39. Górszczyk A, Operto S, Schenini L, Yamada Y (2019) Crustal-scale depth imaging via joint full-waveform inversion of ocean-bottom seismometer data and pre-stack depth migration of multichannel seismic data: a case study from the eastern Nankai Trough. Solid Earth 10:765–784CrossRefGoogle Scholar
  40. György S (ed) (1972) The crustal structure of central and southeastern Europe based on the results of explosion seismology. Hungarian Geophysical Institute Roland Eötvös, Budapest. Geophysical TransactionsGoogle Scholar
  41. Hansen K, Roy Chowdhury K, Phinney RA (1988) The sign filter for seismic event detection. Geophysics 53(8):1024–1033CrossRefGoogle Scholar
  42. Heikkinen P, Kukkonen I, Thybo H (eds) (2011) Special issue – Seismix 2008, active and passive plate margins and subduction zones, Tectonophysics 508Google Scholar
  43. Hobbs RW (1990) Effective Q determiantion using frequency methods on BIRPS data. Tectonophysics 173:25–30CrossRefGoogle Scholar
  44. Hole JA (1992) Nonlinear high-resolution three-dimensional seismic travel time tomography. J Geophys Res 97(B5):6553–6562CrossRefGoogle Scholar
  45. Holliger K, Levander AR (1992) A stochastic view of lower crustal fabric based on evidence from the Ivrea zone. Geophys Res Lett 19(11):1153–1156CrossRefGoogle Scholar
  46. Holliger K, Levander AR, Goff JA (1993) Stochastic modeling of the reflective lower crust: petrophysical and geological evidence from the Ivrea zone (Northern Italy). J Geophys Res 98:11967–11980CrossRefGoogle Scholar
  47. Hurich CA (1996) Statistical description of seismic reflection wave fields: a step towards quantitative interpretation of deep seismic reflection profiles. Geophys J Int 125:719–728CrossRefGoogle Scholar
  48. Hurich CA (2003) The nature of crustal seismic heterogeneity: a case study from the Grenville Province. In: Heterogeneity in the crust and upper mantle: nature, scaling, and seismic properties. Kluwer Academic, New York, pp 299–320CrossRefGoogle Scholar
  49. Hurich CA, Kocurko A (2000) Statistical approaches to interpretation of seismic reflection data. Tectonophysics 329:251–267CrossRefGoogle Scholar
  50. IGCP-559 (2010a) Andrija Mohorovicic (1857–1936) – defining the earth’s crust. http://www.earthscrust.org.au/science/historic/andrija.html
  51. IGCP-559 (2010b) International symposium on deep structure of the continents and their margins series. http://www.earthscrust.org.au/deep_structure_of_the_continents.htm
  52. IGCP-559 (2010c) Seismic imaging programs. http://www.earthscrust.org.au/links.html
  53. Ito Y, Shiomi K, Nakajima J, Hino R (2012) Autocorrelation analysis of ambient noise in northeastern Japan subduction zone. Tectonophysics 572–573:38–46CrossRefGoogle Scholar
  54. Kaila KL, Krishna VG, Roy Chowdhury K, Narain H (1978) Structure of the Kashmir Himalaya from deep seismic soundings. J Geol Soc India 19:1–20Google Scholar
  55. Kaila KL, Roy Chowdhury K, Reddy PR, Krishna VG, Narain H, Subbotin SI, Sollogub VB, Chekunov AV, Kharetchko GE, Lazarenko MA, Ilchenko TV (1979) Crustal structure along Kavali-Udipi profile in the Indian peninsular shield from deep seismic sounding. J Geol Soc India 20:307–333Google Scholar
  56. Kanao M, Fujiwara A, Miyamachi H, Toda S, Ito K, Tomura M, Ikawa T, The SEAL Geotransect Group (2011) Reflection imaging of the crust and the lithospheric mantle in the Lützow-Holm complex, Eastern Dronning Maud Land, Antarctica, derived from SEAL transects. Tectonophysics 508:73–84CrossRefGoogle Scholar
  57. Kanasewich ER, Clowes RM, McLoughan CH (1969) A buried precambrian rift in western Canada. Tectonophysics 8:513–527CrossRefGoogle Scholar
  58. Khan MA, Mechie J, Birt C, Byrne G, Gaciri S, Jacob B, Keller GR, Maguire PKH, Novak O, Nyambok IO, Pate JP, Prodehl C, Riaroh D, Simiyu S, Thybo H (1999) The lithospheric structure of the Kenya Rift as revealed by wide-angle seismic measurements. In: MacNiocaill C, Ryan P (eds) Continental tectonics. Special publication, vol 164. Geological Society, London, pp 257–269Google Scholar
  59. Klemperer SL, Mooney WD (eds) (1998a) Deep seismic profiling of the continents I: general results and new methods, Tectonophysics 286Google Scholar
  60. Klemperer SL, Mooney WD (eds) (1998b) Deep seismic profiling of the continents II: a global survey, Tectonophysics 288Google Scholar
  61. Kong SM, Phinney RA, Roy Chowdhury K (1985) A nonlinear signal detector for enhancement of noisy seismic record sections. Geophysics 50(4):539–550CrossRefGoogle Scholar
  62. Kumar V, Oueity J, Clowes RM, Herrmann F (2011) Enhancing crustal reflection data through curvelet denoising. Tectonophysics 508:106–116CrossRefGoogle Scholar
  63. Levander AR, Gibson BS (1991) Wide-angle seismic reflections from two-dimensional random target zones. J Geophys Res 96(B6): 10251–10260CrossRefGoogle Scholar
  64. Leven JH, Finlayson DM, Wright C, Dooley JC, Kennet BLN (eds) (1990) Seismic probing of continents and their margins, Tectonophysics 173Google Scholar
  65. Liner CL (2004) Elements of 3D seismology. PennWell corporation, TulsaGoogle Scholar
  66. Maguire PKH, Keller GR, Klemperer SL, Mackenzie GD, Keranen K, Harder S, O’Reilly B, Thybo H, Asfaw L, Khan MA, Amha M (2006) Crustal structure of the northern Main Ethiopian Rift from the EAGLE controlled-source survey; a snapshot of incipient lithospheric break-up; special publication. In: Yirgu G, Ebinger CJ, Maguire PKH (eds) The Afar volcanic province within the East African rift system, vol 259. Geological Society, London, pp 269–292Google Scholar
  67. Makovsky Y, Klemperer SL (1999) Measuring the seismic properties of Tibetan bright spots: evidence for free aqueous fluids in the Tibetan middle crust. J Geophys Res 104(B5):10795–10825CrossRefGoogle Scholar
  68. Malinowski M, Crawczyk CM, Carbonell R, Rawlinson N (eds) (2019) Special issue – Advances in seismic imaging across the scales. European Geosciences Union. https://www.solid-earth.net/special-issue986.html
  69. Matthews D, Smith C (eds) (1987) Deep seismic reflection profiling of the continental lithosphere. Royal Astronomical Society, vol 89. Blackwell, Oxford, UKGoogle Scholar
  70. Meissner R, Brown L, Dürbaum H-J, Franke W, Fuchs K, Siefert F (eds) (1991) Continental lithosphere: deep seismic reflections. Geodynamic series, vol 22. American Geophysical Union, Washington, DCGoogle Scholar
  71. Meissner R, Rabbel W, Kern H (2006) Seismic lamination and anisotropy of the lower continental crust. Tectonophysics 416:81–99CrossRefGoogle Scholar
  72. Menke W, Chen R (1984) Numerical studies of the coda falloff rate of multiply scattered waves in randomly layered media. Bull Seismol Soc Am 74(5):1605–1621Google Scholar
  73. Mereu RF, Kovach RJ (1970) A portable inexpensive seismic system for crustal studies. Bull Seismol Soc Am 60(5):1607–1613Google Scholar
  74. Mooney WD, Brocher TM (1987) Coincident seismic reflection/refraction studies of the continental lithosphere: a global review. Rev Geophys 25:723–742. American Geophysical UnionCrossRefGoogle Scholar
  75. Morgan JV, Hadwin M, Warner MR, Barton PJ, Morgan RPL (1994) The polarity of deep seismic reflections from the lithospheric mantle: evidence for a relict subduction zone. Tectonophysics 232:319–328CrossRefGoogle Scholar
  76. Morozov IB, Morozova EA, Smithson SB, Solodilov LN (1998) 2-D Image of seismic attenuation beneath the deep seismic sounding profile “Quartz,” RussiaGoogle Scholar
  77. Morozov IB, Morozova EA, Smithson SB, Solodilov LN (undated) Long range profile Quartz. www.adc1.iris.edu/data/reports/misc.ext/QUARTZ.pdf
  78. Nielsen L, Thybo H (2006) Identification of crustal and upper mantle heterogeneity by modelling of controlled-source seismic data. Tectonophysics 416:209–228CrossRefGoogle Scholar
  79. Oliver J, Dobrin M, Kaufman S, Meyer R, Phinney R (1976) Continuous seismic reflection profiling of the deep basement, Hardeman County, Texas. Geol Soc Am Bull 87:1537–1546CrossRefGoogle Scholar
  80. Palomeras I, Carbonell R, Ayarza P, Fernàndez M, Simancas JF, Poyatos DM, Lodeiro FG, Pérez-Estaún A (2011) Geophysical model of the lithosphere across the Variscan Belt of SW-Iberia: multidisciplinary assessment. Tectonophysics 508:42–51CrossRefGoogle Scholar
  81. PASSCAL. Program of array seismic studies of continental lithosphere. http://iris.edu/hq/files/programs/passcal
  82. Pavlenkova NI (2011) Seismic structure of the upper mantle along long-range PNE profiles – rheological implication. Tectonophysics 508:85–95CrossRefGoogle Scholar
  83. Pavlenkova GA, Pavlenkova NI (2006) Upper mantle structure of Northern Eurasia for peaceful nuclear explosion data. Tectonophysics 416:33–52CrossRefGoogle Scholar
  84. Peddy C, Pinet B, Masson D, Scrutton R, Sibuet JC, Warner MR, Lefort JP, Shroeder IJ, BIRPS, ECORS (1989) Crustal structure of the Goban Spur continental margin, Northeast Atlantic, from deep seismic reflection profiling. J Geol Soc 146:427–437CrossRefGoogle Scholar
  85. Percival JA, Green AG, Milkerei B, Cook FA, Geis W, West GF (1989) Seismic reflection profiles across deep continental crust exposed in the Kapuskasing uplift structure. Nature 342:416–420CrossRefGoogle Scholar
  86. Phinney RA (1986) A seismic cross-section of the New England Appalachians: the orogen exposed. In: Barazangi M, Brown L (eds) Reflection seismology: the continental crust. Geodynamic series, vol 14. American Geophysical Union, Washington, DC, pp 151–172Google Scholar
  87. Phinney R, Roy Chowdhury K (1989) Reflection seismic studies of crustal structure in the Eastern United States. In: Pakiser L, Mooney W (eds) Geophysical framework of the continental United States: GSA memoir, vol 172. Geological Society of America, Boulder, pp 613–653CrossRefGoogle Scholar
  88. Pratt TL, Mondary JF, Brown LD (1993) Crustal structure and deep reflector properties: wide angle shear and compressional wave studies of the midcrustal surrency bright spot beneath southeastern Georgia. J Geophys Res 98(B10):17,723–17,735CrossRefGoogle Scholar
  89. Pullammanappallil S, Levander A, Larkin S (1997) Estimation of crustal stochastic parameters from seismic exploration data. J Geophys Res 102(B7):15,269–15,286CrossRefGoogle Scholar
  90. Pylypenko VN, Verpakhovska OO, Starostenko VI, Pavlenkova NI (2011) Wave imgaes of the crustal structure from refraction and wide-angle reflection migrations along the DOBRE profile (Dnieper-Donets paleorift). Tectonophysics 508:96–105CrossRefGoogle Scholar
  91. Rawlinson N, Goleby B (eds) (2012) Special issue – Seismic imaging of continents and their margins: new research at the confluence of active and passive seismology, Tectonophysics 572–573Google Scholar
  92. Rawlinson N, Pilia S, Young M, Salmon M, Yang Y (2016) Crust and upper mantle structure beneath southeast Australia from ambient noise and teleseismic tomography. Tectonophysics 689:143–156CrossRefGoogle Scholar
  93. Rawlinson N, Stephenson R, Carbonell R (eds) (2017) Special issue – Seismic 2016: advances in active and passive seismic imaging of continents and their margins, Tectonophysics 718Google Scholar
  94. Reddy PR, Venkateswaralu N, Koteswar Rao P, Prasad ASSSRS (1999) Crustal structure of peninsular shield, India from DSS studies. Curr Sci 77:1606–1611Google Scholar
  95. Roberts AW, Hobbs RW, Goldstein M, Moorkamp M, Jegen M, Heincke B (2012) Crustal constraint through complete model space screening for diverse geophysical datasets facilitated by emulation. Tectonophysics 572–573:47–63CrossRefGoogle Scholar
  96. Roy Chowdhury K, Hargraves RB (1981) Deep seismic soundings in India and the origin of continental crust. Nature 291(5817):648–650CrossRefGoogle Scholar
  97. Ryberg T, Fuchs K, Egorkin A, Solodilov L (1995) Observation of high-frequency teleseismic Pn on the long-range Quartz profile across northern Russia. J Geophys Res 100(B9):18151–18163CrossRefGoogle Scholar
  98. Santosh M, Carbonell R, Artemieva I, Badal J (eds) (2014) Special issue – Advances in seismic imaging of crust and mantle, Tectonophysics 627Google Scholar
  99. Seismix-2018-abs (2018) Book of abstracts, 18th international SESIMIX symposium, seismology between the poles, Cracow. http://seismix2018.pl/abstract
  100. Sheriff RE, Geldart LP (1995) Exploration seismology, 2nd edn. Cambridge University Press, Cambridge, UKCrossRefGoogle Scholar
  101. Simancas F, Carbonell R, Gonzáles-Lodeiro F, Estaún AP, Juhlin C, Ayarza P, Kashubin A, Azor A, Poyatos DM, Almodóvar G, Pascual E, Sáez R, Expósito I (2003) Crustal structure of the transpressional Variscan of SW Iberia: SW Iberia deep seismic reflection profile (IBERSEIS). Tectonics 22(6):1-1–1-19CrossRefGoogle Scholar
  102. Smithson SB, Brown SK (1977) A model for lower continental crust. Earth Planet Sci Lett 35:134–144CrossRefGoogle Scholar
  103. Smythe DK, Dobinson A, McQuillin R, Brewer JA, Matthews DH, Blundell DJ, Kelk B (1982) Deep structure of the Scottish Caledonides revealed by the MOIST reflection profile. Nature 299:338–340CrossRefGoogle Scholar
  104. Smythe DK, Smithson SB, Gillen C, Humphreys C, Kristoffersen Y, Karev NA, Garipov VZ, Pavlenkova NI, the Kola-92 Working Group (1994) Project images crust, collects seismic data in world’s largest borehole. EOS Trans Am Geophys Union 75:473–476CrossRefGoogle Scholar
  105. Snieder R, Wapenaar K (2010) Imaging with ambient noise. Phys Today 63(9):44–49CrossRefGoogle Scholar
  106. Snyder DB, Eaton DW, Hurich CA (eds) (2006) Seismic probing of continents and their margins, Tectonophysics 420Google Scholar
  107. Steinhart JS, Meyer RP (1961) Explosion studies of continental structure. Carnegie Institution, Washington, DC. publ 622Google Scholar
  108. Syracuse EM, Zhang H, Maceira M (2017) Joint inversion of seismic and gravity data for imaging seismic velocity structure of the crust and upper mantle beneath Utah, United States. Tectonophysics 718:105–117CrossRefGoogle Scholar
  109. The DOBREfraction‘99 Working Group (2003) “DOBREfraction‘99” – velocity model of the crust and upper mantle beneath the Donbas Foldbelt (East Ukraine). Tectonophysics 371:81–110CrossRefGoogle Scholar
  110. Thybo H (ed) (2002) Deep seismic profiling of the continents and their margins, Tectonophysics 355Google Scholar
  111. USARRAY. A continental-scale seismic observatory. http://www.usarray.org
  112. van der Baan M (2000) Recognition and reconstruction of coherent energy with application to deep seismic reflection data. Geophysics 65(2):656–667CrossRefGoogle Scholar
  113. Vasudevan K, Cook FA (1998) Skeletons and fractals – a statistical approach to deep crustal seismic data processing and interpretation. Tectonophysics 286:93–109CrossRefGoogle Scholar
  114. Vermeer GJO (2002) 3-D seismic survey design. Society of Exploration Geophysicists, TulsaCrossRefGoogle Scholar
  115. Virieux J, Operto S (2009) An overview of full-waveform inversion in exploration geophysics. Geophysics 74(6):wcc1–wcc26CrossRefGoogle Scholar
  116. Virieux J, Asnaashari A, Brossier R, Métivier L, Ribodetti A, Zhou W (2017) An overview of full-waveform inversion in exploration geophysics. In: Encyclopedia of exploration geophysics. SEG, Tulsa, Oklahoma, pp R1-1–R1-40.  https://doi.org/10.1190/1.9789560803027.entry6
  117. Wapenaar K, Snieder R (2007) Chaos tamed. Nature 447:643CrossRefGoogle Scholar
  118. Warner M (1990) Absolute reflection coefficients from deep seismic reflections. Tectonophysics 173:15–23CrossRefGoogle Scholar
  119. White DJ, Ansorge J, Bodoky TJ, Hajnal Z (eds) (1996) Seismic reflection probing of the continents and their margins, Tectonophysics 264Google Scholar
  120. Yegorova T, Pavlenkova G (2014) Structure of the upper mantle of Northern Eurasia from 2D density modeling on seismic profiles with peaceful nuclear explosions. Tectonophysics 627:57–71CrossRefGoogle Scholar
  121. Yilmaz Ö (2001) Seismic data analysis, processing, inversion and interpretation of seismic data. Investigations in geophysics, vol I, 2nd edn. Society of Exploration Geophysicists, TulsaCrossRefGoogle Scholar
  122. Zelt CA (1995) Modelling strategies and model assessment for wide-angle seismic traveltime data. Geophys J Int 139:183–204CrossRefGoogle Scholar
  123. Zelt CA, Smith RB (1992) Seismic travel time inversion for 2-D crustal velocity structure. Geophys J Int 108:16–34CrossRefGoogle Scholar
  124. Zhao W, Nelson KD, Project INDEPTH team (1993) Deep seismic reflection evidence for continental under thrusting beneath southern Tibet. Nature 366:557–559CrossRefGoogle Scholar
  125. Zingg A (1990) The Ivrea crustal cross-section (Northern Italy and Southern Switzerland). In: Salisbury MH, Fountain DM (eds) Exposed cross sections of the continental crust. Kluwer, Dordrecht, pp 1–19Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Earth SciencesUtrecht UniversityUtrechtThe Netherlands