Encyclopedia of Solid Earth Geophysics

Living Edition
| Editors: Harsh K. Gupta


Living reference work entry
DOI: https://doi.org/10.1007/978-3-030-10475-7_172-1



Subdiscipline of exploration geophysics focusing on the geophysical signatures resulting from microbial communities and their interactions with geologic media.


Geophysical imaging techniques have the potential to measure not just the subsurface physical and chemical properties, as geophysics is conventionally used, but also microbes, microbial processes, and microbe-mineral interactions. “Biogeophysics” is defined here as a rapidly evolving discipline of exploration geophysics concerned with the geophysical signatures of microbial communities and their interactions with geologic media that combines the fields of microbiology, biogeoscience, and geophysics (Atekwana and Slater 2009) (Fig. 1). Within this context, biogeophysics examines the links between dynamic subsurface microbial processes, microbial-induced alterations to geologic materials, and geophysical signatures. We note that the term biogeophysics is also used in other disciplines (a) to...
This is a preview of subscription content, log in to check access.


  1. Abdel Aal GZA, Atekwana EA, Slater LD (2004) Effects of microbial processes on electrolytic and interfacial electrical properties of unconsolidated sediments. Geophys Res Lett 31(12):L12505.  https://doi.org/10.1029/2004gl020030CrossRefGoogle Scholar
  2. Abdel Aal G, Atekwana E, Radzikowski S, Rossbach S ( 2009) Effect of bacterial adsorption on low frequency electrical properties of clean quartz sands and iron-oxide coated sands, Geophys Res Lett 36, L04403 (pages 1–5),  https://doi.org/10.1029/2008GL036196
  3. Allen JP, Atekwana EA, Duris JW, Werkema DD, Rossbach S (2007) The microbial community structure in petroleum-contaminated sediments corresponds to geophysical signatures. Appl Environ Microbiol 73(9):2860–2870.  https://doi.org/10.1128/aem.01752-06CrossRefGoogle Scholar
  4. Atekwana EA, Slater L (2009) Biogeophysics: a new frontier in Earth science research. Rev Geophys.  https://doi.org/10.1029/2009RG000285
  5. Atekwana EA, Atekwana EA, Werkema DD Jr, Allen J, Smart L, Duris J, Cassidy DP, Sauck WA, Rossbach S (2004) Evidence for microbial enhanced electrical conductivity in hydrocarbon-contaminated sediments. Geophys Res Lett 31:L23501.  https://doi.org/10.1029/2004GL021359CrossRefGoogle Scholar
  6. Atekwana EA, Mewafy FM, Abdel Aal G, Werkema DD, Revil A, Slater LD (2014) High-resolution magnetic susceptibility measurements for investigating magnetic mineral formation during microbial mediated iron reduction. J Geophys Res Biogeosci 119:80–94.  https://doi.org/10.1002/2013JG002414CrossRefGoogle Scholar
  7. Bazylinski DA, Frankel RB (2004) Magnetosome formation in prokaryotes. Nat Rev Microbiol 2(3):217–230CrossRefGoogle Scholar
  8. Bennett PC, Hiebert FK, Choi WJ (1996) Microbial colonization and weathering of silicates in a petroleum-contaminated groundwater. Chem Geol 132(1–4):45–53CrossRefGoogle Scholar
  9. Cassidy DP, Werkema DD, Sauck WA, Atekwana E, Rossbach S, Duris J (2001) The effects of LNAPL biodegradation products on electrical conductivity measurements. J Environ Eng Geophys 6(1):47–52CrossRefGoogle Scholar
  10. Comas X, Slater L (2007) Evolution of biogenic gases in peat blocks inferred from noninvasive dielectric permittivity measurements. Water Resour Res 43(5):W05424.  https://doi.org/10.1029/2006wr005562CrossRefGoogle Scholar
  11. Cozzarelli IM, Herman JS, Baedecker MJ, Fischer JM (1999) Geochemical heterogeneity of a gasoline-contaminated aquifer. J Contam Hydrol 40(3):261–284CrossRefGoogle Scholar
  12. Davis CA, Atekwana E, Slater LD, Rossbach S, Mormile MR (2006) Microbial growth and biofilm formation in geologic media is detected with complex conductivity measurements. Geophys Res Lett 33(18):L18403.  https://doi.org/10.1029/2006gl027312CrossRefGoogle Scholar
  13. Davis CA, Pyrak-Nolte LJ, Atekwana EA, Werkema DD, Haugen ME (2009) Microbial-induced heterogeneity in the acoustic properties of porous media. Geophys Res Lett 36:L21405.  https://doi.org/10.1029/2009gl039569CrossRefGoogle Scholar
  14. DeJong, JT, Mortensen BM, Martinez BC, Nelson DC (2010) Bio-mediated soil improvement. Ecol Eng 36(2):197–210Google Scholar
  15. DeJong JT, Fritzges MB, Nusslein K (2006) Microbially induced cementation to control sand response to undrained shear. J Geotech Geoenviron 132(11):1381–1392.  https://doi.org/10.1061/(asce)1090-0241(2006)132:11(1381)CrossRefGoogle Scholar
  16. Ferris FG, Fratton CM, Gertis JP, Schultzelam S, Lollar BS (1995) Microbial precipitation of a strontium calcite phase at a groundwater discharge zone near rock-creek, British-Columbia, Canada. Geomicrobiol J 13(1):57–67CrossRefGoogle Scholar
  17. Fredrickson JK, Zachara JM, Kennedy DW, Dong HL, Onstott TC, Hinman NW, Li SM (1998) Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacterium. Geochim Cosmochim Acta 62(19–20):3239–3257CrossRefGoogle Scholar
  18. Heenan JW, Ntarlagiannis D, Slater LD, Beaver CL, Rossbach S, Revil A, Atekwana EA, Bekins B (2017) Field-scale observations of a transient geobattery resulting from natural attenuation of a crude oil spill. J Geophys Res Biogeosci 122:918–929.  https://doi.org/10.1002/2016JG003596CrossRefGoogle Scholar
  19. Hiebert FK, Bennett PC (1992) Microbial control of silicate weathering in organic-rich ground water. Science 258(5080):278–281CrossRefGoogle Scholar
  20. Jimenez-Lopez C, Romanek CS, Bazylinski DA (2010) Magnetite as a prokaryotic biomarker: a review. J Geophys Res 115:G00G03.  https://doi.org/10.1029/2009JG001152CrossRefGoogle Scholar
  21. Lund AL, Slater LD, Atekwana EA, Ntarlagiannis D, Cozzarelli I, Bekins BA (2017) Evidence of coupled carbon and iron cycling at a hydrocarbon-contaminated site from time lapse magnetic susceptibility. Environ Sci Technol 51(19):11244–11249Google Scholar
  22. McMahon PB, Chapelle FH, Falls WF, Bradley PM (1992) Role of microbial processes in linking sandstone diagenesis with organic-rich clays. J Sediment Petrol 62(1):1–10Google Scholar
  23. McMahon PB, Vroblesky DA, Bradley PM, Chapelle FH, Gullett CD (1995) Evidence for enhanced mineral dissolution in organic acid-rich shallow ground-water. Ground Water 33(2):207–216CrossRefGoogle Scholar
  24. Mellage A, Smeaton CM, Furman A, Atekwana EA, Rezanezhad F, Van Cappellen P (2018) Linking spectral induced polarization (SIP) and subsurface microbial processes: Results from sand column incubation experiments. Environ Sci Technol 52(4):2081–2090CrossRefGoogle Scholar
  25. Minsley B, Sogade J, Morgan FD (2007) Three-dimensional self-potential inversion for subsurface DNAPL contaminant detection at the Savannah river site, South Carolina. Water Resour Res 43:W04429.  https://doi.org/10.1029/2005WR003996.CrossRefGoogle Scholar
  26. Naudet V, Revil A, Bottero J-Y, Bégassat P (2003) Relationship between self-potential (SP) signals and redox conditions in contaminated groundwater. Geophys Res Lett 30(21):2091CrossRefGoogle Scholar
  27. Nielsen LP, Risgaard-Petersen N, Fossing H, Christensen PB, Sayama M (2010) Electric currents couple spatially separated biogeochemical processes in marine sediment. Nature 463(7284):1071–1074CrossRefGoogle Scholar
  28. Ntarlagiannis D, Williams KH, Slater L, Hubbard S (2005) The low frequency electrical response to microbially induced sulfide precipitation. J Geophys Res 110:G02009CrossRefGoogle Scholar
  29. Parsekian AD, Slater L, Comas X, Glaser PH (2010) Variations in free-phase gases in peat landforms determined by ground-penetrating radar. J Geophys Res 115:G02002.  https://doi.org/10.1029/2009JG001086.CrossRefGoogle Scholar
  30. Prodan C, Mayo F, Claycomb JR, Miller JHJ (2004) Low-frequency, low-field dielectric spectroscopy of living cell suspensions. J Appl Phys 95(7):3754–3756CrossRefGoogle Scholar
  31. Prodan E, Prodan C, Miller JH (2008) The dielectric response of spherical live cells in suspension: an analytic solution. Biophys J 95(9):4174–4182.  https://doi.org/10.1529/biophysj.108.137042CrossRefGoogle Scholar
  32. Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley D r (2005) Extracellular electron transfer via microbial nanowires. Nature 435:1098–1101CrossRefGoogle Scholar
  33. Revil A, Mendonça CA, Atekwana EA, Kulessa B, Hubbard SS, Bohlen KJ (2010) Understanding biogeobatteries: Where geophysics meets microbiology. J Geophys Res 115.  https://doi.org/10.1029/2009jg001065
  34. Revil A, Atekwana E, Zhang C, Jardani A, Smith S (2012) A new model for the spectral induced polarization signature of bacterial growth in porous media. Water Resour Res 48:W09545.  https://doi.org/10.1029/2012WR011965CrossRefGoogle Scholar
  35. Rijal ML, Appel E, Petrovský E, Blaha U (2010) Change of magnetic properties due to fluctuations of hydrocarbon contaminated groundwater in unconsolidated sediments. Environ Pollut 158(5):1756–1762Google Scholar
  36. Saneiyan S, Ntarlagiannis D, Ohan J, Lee J, Colwell F, Burns S (2019) Induced polarization as a monitoring tool for in-situ microbial induced carbonate precipitation (MICP) processes. Ecol Eng 127:36–47CrossRefGoogle Scholar
  37. Sato M, Mooney HM (1960) The electrochemical mechanism of sulfide self-potentials. Geophysics 25(1):226–249CrossRefGoogle Scholar
  38. Sauck WA, Atekwana E, Nash MS (1998) High conductivities associated with an LNAPL plume imaged by integrated geophysical techniques. J Environ Eng Geophys 2(3):203–212Google Scholar
  39. Slater L, Ntarlagiannis D, Personna YR, Hubbard S (2007) Pore-scale spectral induced polarization signatures associated with FeS biomineral transformations. Geophys Res Lett 34(21):L21404.  https://doi.org/10.1029/2007gl031840CrossRefGoogle Scholar
  40. Stoy RD, Foster KR, Schwan HP (1982) Dielectric properties of mammalian tissues from 0.1 to 100 MHz: a summary of recent data. Phys Med Biol 27:501–513CrossRefGoogle Scholar
  41. Werkema DD Jr, Atekwana EA, Endres AL, Sauck WA, Cassidy DP (2003) Investigating the geoelectrical response of hydrocarbon contamination undergoing biodegradation. Geophys Res Lett 30(12):1647–1651CrossRefGoogle Scholar
  42. Williams KH, Ntarlagiannis D, Slater LD, Dohnalkova A, Hubbard SS, Banfield JF (2005) Geophysical Imaging of Stimulated Microbial Biomineralization. Environ Sci Technol 39(19):7592–7600CrossRefGoogle Scholar
  43. Wu Y, Hubbard S, Williams KH, Ajo-Franklin J (2010) On the complex conductivity signatures of calcite precipitation. J Geophys Res.  https://doi.org/10.1029/2009JG001129

Authors and Affiliations

  1. 1.Department of Earth & Environmental SciencesRutgers University NewarkNewarkUSA
  2. 2.College of Earth, Ocean, and EnvironmentUniversity of DelawareNewarkUSA