Computer Vision

Living Edition

Face Detection

  • Chen Change LoyEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-030-03243-2_798-1
  • 5 Downloads

Synonyms

Related Concepts

Definition

Face detection refers to the detection of face instances in an image.

Background

Face detection is a fundamental step to all facial analysis algorithms, including face alignment, face parsing, and face recognition. Given an arbitrary image, the goal of face detection is to determine the presence of faces in the image and, if present, return the location and extent of each face in an image.

As in object detection, early work in face detection took a sliding window paradigm, in which a classifier is applied on a dense image grid. Following this paradigm, early progress in face detection is closely related to the combined use of handcrafted features and classifiers, e.g., Haar-like features with boosting [1, 2], Histogram of Oriented Gradients (HOG) with Support Vector Machine (SVM) [3, 4], and multiple channel features with boosting [5]. Most early detectors perform well in constrained scenarios where near frontal...

This is a preview of subscription content, log in to check access.

References

  1. 1.
    Viola P, Jones M (2001) Rapid object detection using a boosted cascade of simple features. In: IEEE conference on computer vision and pattern recognitionCrossRefGoogle Scholar
  2. 2.
    Viola P, Jones MJ (2004) Robust real-time face detection. Int J Comput Vis 57(2):137–154CrossRefGoogle Scholar
  3. 3.
    Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: IEEE conference on computer vision and pattern recognitionCrossRefGoogle Scholar
  4. 4.
    Mathias M, Benenson R, Pedersoli M, Van Gool L (2014) Face detection without bells and whistles. In: European conference on computer visionCrossRefGoogle Scholar
  5. 5.
    Dollár P, Appel R, Belongie S, Perona P (2014) Fast feature pyramids for object detection. IEEE Trans Pattern Anal Mach Intell 36(8):1532–1545CrossRefGoogle Scholar
  6. 6.
    Zafeiriou S, Zhang C, Zhang Z (2015) A survey on face detection in the wild: past, present and future. Comput Vis Image Underst 138:1–24CrossRefGoogle Scholar
  7. 7.
    Zhang C, Zhang Z (2010) A survey of recent advances in face detection. Technical report, MSR-TR-2010-66Google Scholar
  8. 8.
    Li J, Zhang Y (2013) Learning SURF cascade for fast and accurate object detection. In: IEEE conference on computer vision and pattern recognitionCrossRefGoogle Scholar
  9. 9.
    Mita T, Kaneko T, Hori O (2005) Joint haar-like features for face detection. In: IEEE international conference on computer visionCrossRefGoogle Scholar
  10. 10.
    Yan S, Shan S, Chen X, Gao W (2008) Locally assembled binary (lab) feature with feature-centric cascade for fast and accurate face detection. In: IEEE conference on computer vision and pattern recognitionGoogle Scholar
  11. 11.
    Zhang L, Chu R, Xiang S, Liao S, Li SZ (2007) Face detection based on multi-block LBP representation. In: Advances in biometricsCrossRefGoogle Scholar
  12. 12.
    Huang C, Ai H, Li Y, Lao S (2007) High-performance rotation invariant multiview face detection. IEEE Trans Pattern Anal Mach Intell 29(4):671–686CrossRefGoogle Scholar
  13. 13.
    Viola P, Platt JC, Zhang C (2005) Multiple instance boosting for object detection. In: Advances in neural information processing systemsGoogle Scholar
  14. 14.
    Bourdev L, Brandt J (2005) Robust object detection via soft cascade. In: IEEE conference on computer vision and pattern recognitionCrossRefGoogle Scholar
  15. 15.
    Xiao R, Zhu L, Zhang H-J (2003) Boosting chain learning for object detection. In: IEEE international conference on computer visionGoogle Scholar
  16. 16.
    Felzenszwalb PF, Girshick RB, McAllester D, Ramanan D (2010) Discriminatively trained part based models for object detection. IEEE Trans Pattern Anal Mach Intell 32(9):1627–1645CrossRefGoogle Scholar
  17. 17.
    Yan J, Zhang X, Lei Z, Li SZ (2014) Face detection by structural models. Image Vis Comput 32(10):790–799CrossRefGoogle Scholar
  18. 18.
    Zhu X, Ramanan D (2012) Face detection, pose estimation, and landmark localization in the wild. In: IEEE conference on computer vision and pattern recognitionGoogle Scholar
  19. 19.
    Dollar P, Tu Z, Perona P, Belongie S (2009) Integral channel features. In: British machine vision conferenceCrossRefGoogle Scholar
  20. 20.
    Felzenszwalb PF, Girshick RB, McAllester D (2010) Cascade object detection with deformable part models. In: IEEE conference on computer vision and pattern recognitionCrossRefGoogle Scholar
  21. 21.
    Yan J, Zhang X, Lei Z, Li SZ (2013) Real-time high performance deformable model for face detection in the wild. In: International conference on biometricsCrossRefGoogle Scholar
  22. 22.
    Rowley HA, Baluja S, Kanade T (1998) Neural network-based face detection. IEEE Trans Pattern Anal Mach Intell 20(1):23–38CrossRefGoogle Scholar
  23. 23.
    Rowley HA, Baluja S, Kanade T (1998) Rotation invariant neural network-based face detection. In: IEEE conference on computer vision and pattern recognitionGoogle Scholar
  24. 24.
    Vaillant R, Monrocq C, LeCun Y (1994) Original approach for the localisation of objects in images. IEEE Proc Vis Image Signal Process 141(4):245CrossRefGoogle Scholar
  25. 25.
    Hu P, Ramanan D (2017) Finding tiny faces. In: IEEE conference on computer vision and pattern recognitionCrossRefGoogle Scholar
  26. 26.
    Jiang H, Learned-Miller E (2017) Face detection with the Faster R-CNN. In: International conference on automatic face & gesture recognitionCrossRefGoogle Scholar
  27. 27.
    Li H, Lin Z, Shen X, Brandt J, Hua G (2015) A convolutional neural network cascade for face detection. In: IEEE conference on computer vision and pattern recognitionCrossRefGoogle Scholar
  28. 28.
    Loy CC, Lin D, Ouyang W, Xiong Y, Yang S, Huang Q, Zhou D, Xia W, Li Q, Luo P et al (2019) WIDER face and pedestrian challenge 2018: methods and results. arXiv preprint arXiv:1902.06854Google Scholar
  29. 29.
    Qin H, Yan J, Li X, Hu X (2016) Joint training of cascaded cnn for face detection. In: IEEE conference on computer vision and pattern recognitionCrossRefGoogle Scholar
  30. 30.
    Yang S, Luo P, Loy CC, Tang X (2015) From facial parts responses to face detection: a deep learning approach. In: IEEE international conference on computer visionGoogle Scholar
  31. 31.
    Yang S, Xiong Y, Chen Change Loy, and Tang X Face detection through scale-friendly deep convolutional networks. arXiv preprint arXiv:1706.02863, (2017)Google Scholar
  32. 32.
    Zhang K, Zhang Z, Li Z, Qiao Y (2016) Joint face detection and alignment using multi-task cascaded convolutional networks. IEEE Signal Process Lett 23(10):1499–1503CrossRefGoogle Scholar
  33. 33.
    Zhang S, Zhu X, Lei Z, Shi H, Wang X, Li SZ (2017) S3FD: single shot scale-invariant face detector. In: IEEE international conference on computer visionGoogle Scholar
  34. 34.
    Ren S, He K, Girshick R, Sun J (2015) Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in neural information processing systemsGoogle Scholar
  35. 35.
    Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Cheng-Yang Fu, Berg AC (2016) SSD: single shot multibox detector. In: European conference on computer visionGoogle Scholar
  36. 36.
    Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only look once: unified, real-time object detection. In: IEEE conference on computer vision and pattern recognitionGoogle Scholar
  37. 37.
    Yu F, Koltun V (2016) Multi-scale context aggregation by dilated convolutions. In: International conference on learning representationsGoogle Scholar
  38. 38.
    Najibi M, Samangouei P, Chellappa R, Davis L (2017) SSH: single stage headless face detector. In: IEEE international conference on computer visionGoogle Scholar
  39. 39.
    Tang X, Du DK, He Z, Liu J (2018) PyramidBox: a context-assisted single shot face detector. In: European conference on computer visionGoogle Scholar
  40. 40.
    Freund Y, Schapire RE (1997) A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci 55(1):119–139CrossRefMathSciNetzbMATHGoogle Scholar
  41. 41.
    Yu J, Jiang Y, Wang Z, Cao Z, Huang T (2016) Unitbox: an advanced object detection network. In: ACM multimediaCrossRefGoogle Scholar
  42. 42.
    Shrivastava A, Gupta A, Girshick R (2016) Training region-based object detectors with online hard example mining. In: IEEE conference on computer vision and pattern recognitionCrossRefGoogle Scholar
  43. 43.
    Dai J, Qi H, Xiong Y, Li Y, Zhang G, Hu H, Wei Y (2017) Deformable convolutional networks. In: IEEE international conference on computer visionCrossRefGoogle Scholar
  44. 44.
    Wang J, Chen K, Yang S, Loy CC, Lin D (2019) Region proposal by guided anchoring. In: IEEE conference on computer vision and pattern recognitionCrossRefGoogle Scholar
  45. 45.
    Lin T-Y, Dollár P, Girshick R, He K, Hariharan B, Belongie S (2017) Feature pyramid networks for object detection. In: IEEE conference on computer vision and pattern recognitionCrossRefGoogle Scholar
  46. 46.
    Jain V, Learned-Miller E (2010) FDDB: a benchmark for face detection in unconstrained settings. Technical report, University of Massachusetts, AmherstGoogle Scholar
  47. 47.
    Klare BF, Klein B, Taborsky E, Blanton A, Cheney J, Allen K, Grother P, Mah A, Burge M, Jain AK (2015) Pushing the frontiers of unconstrained face detection and recognition: IARPA janus benchmark A. In: IEEE conference on computer vision and pattern recognitionGoogle Scholar
  48. 48.
    Yang S, Luo P, Loy CC, Tang X (2016) WIDER FACE: a face detection benchmark. In: IEEE conference on computer vision and pattern recognitionGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Nanyang Technological UniversitySingaporeSingapore

Section editors and affiliations

  • Chen Change Loy
    • 1
  • Wenjun Zeng
    • 2
  1. 1.Nanyang Technological UniversitySingaporeSingapore
  2. 2.Microsoft Research AsiaBeijingChina