Predictive Turn in Translation Studies: Review and Prospects

Reference work entry


Translation studies – like other disciplines – are influenced by digitization, big data analytics, and artificial intelligence. Two major scientific developments exploit digital and data-driven methods and are currently triggering a “predictive turn” in translation studies: machine learning approaches to translation and computational modelling of the human translation process. This chapter presents a literature review of these two areas and explains the development of the “predictive turn.” The impact of machine translation on the market, practice, and theory of translation changes the way a translation is defined; it is not necessarily only a human product or service anymore. Using behavioral and imaging techniques – e.g., eye tracking, electroencephalography (EEG), and functional magnetic resonance imaging (fMRI) – the hitherto speculatively investigated translation process is becoming increasingly predictable. Machine translation aims to predict the product of the translation process which used to be human only and which is being modelled by translation process researchers. The ever-tighter integration of human and machine means that risks resulting from this interaction (e.g., in terms of error rates) must be calculated differently. While not yet possible, a fully implemented model of the translation process which can predict when and why a translator is having trouble carrying out the task could be integrated with a machine translation system and which behaves in such a way as to provide the necessary information the human needs to solve the problem at hand. It is also very likely that machine translation systems will learn from the human process so that they will eventually become even better at predicting what and how the human would translate. The integration between human and machine will, just like in all other aspects of life, become more intimate, radicalizing the risks and benefits associated with this conversation between mathematical models and human behavior and cognition.


Translation process Translation behavior Machine translation Post-editing 


  1. Alves, F., & Vale, D. C. (2009). Probing the unit of translation in time: Aspects of the design and development of a web application for storing, annotating, and querying translation process data. Across Languages and Cultures: A Multidisciplinary Journal for Translation and Interpreting Studies, 10(2), 251–273. Scholar
  2. Alves, F., & Vale, D. C. (2011). On drafting and revision in translation: A corpus linguistics oriented analysis of translation process data. Translation: Corpora, Computation, Cognition. Special Issue on Parallel Corpora: Annotation, Exploitation, Evaluation, 1(1), 105–122. Available at: Scholar
  3. Balling, L. W., & Carl, M. (2014). Production time across languages and tasks: A large-scale analysis using the CRITT translation process database. In A. Ferreira & J. Schwieter (Eds.), Psycholinguistic and cognitive inquiries in translation and interpretation studies (pp. 239–268). Newcastle upon Tyne: Cambridge Scholars Publishing.Google Scholar
  4. Belinkov, Y. et al. (2017). Evaluating layers of representation in neural machine translation on part-of-speech and semantic tagging tasks. In Proceedings of the Eighth International Joint Conference on Natural Language Processing (volume 1: Long Papers) (pp. 1–10). Asian Federation of Natural Language Processing. Available at:
  5. BNC. (2007). The British National Corpus, version 3. Available at:
  6. Bock, B. M., Lange, D., & Fix, U. (2017). Das Phänomen “Leichte Sprache” im Spiegel aktueller Forschung – Tendenzen, Fragestellungen und Herangehensweisen. In B. M. Bock, D. Lange, & U. Fix (Eds.), Leichte Sprache“ im Spiegel” theoretischer und angewandter Forschung (pp. 11–31). Berlin: Frank & Timme.Google Scholar
  7. Bredel, U., & Maaß, C. (2016). Ratgeber Leichte Sprache. Die wichtigsten Regeln und Empfehlungen für die Praxis. Berlin: Dudenverlag.Google Scholar
  8. Canfora, C., & Ottmann, A. (2015). Risikomanagement für Übersetzungen. trans-kom, 8(2), 314–346.Google Scholar
  9. Carl, M. (2010). A computational framework for a cognitive model of human translation processes. In Proceedings of Aslib translating and the computer 32. London.Google Scholar
  10. Carl, M., & Dragsted, B. (2012). Inside the monitor model: Processes of default and challenged translation production. TC3, Translation: Computation, Corpora, Cognition, 2(1), 127–145.Google Scholar
  11. Carl, M., & Kay, M. (2011). Gazing and typing activities during translation: A comparative study of translation units of professional and student translators. Meta: Translators’ Journal, 56(4), 952–975. Scholar
  12. Carl, M., & Schaeffer, M. J. (2017). Why translation is difficult: A corpus-based study of non-literality in post-editing and from-scratch translation. Hermes – Journal of Language and Communication Studies, 56, 43–57.CrossRefGoogle Scholar
  13. Carl, M., & Schaeffer, M. J. (2018). The development of the TPR-DB as grounded theory method. Translation, Cognition & Behavior, 1(1), 168–193. Scholar
  14. Carl, M., Aizawa, A., Yamada, M. (2016a) English-to-Japanese translation vs. dictation vs. post-editing. In Lrec 2016 Proceedings: Tenth International Conference on Language Resources and Evaluation (pp. 4024–4031).Google Scholar
  15. Carl, M., Bangalore, S., & Schaeffer, M. (Eds.). (2016b). New directions in empirical translation process research: Exploring the CRITT TPR-DB (New Frontiers in Translation Studies). Cham: Springer. Scholar
  16. Čulo, O., et al. (2014). The influence of post-editing on translation strategies. In S. O’Brien, L. W. Balling, M. Carl, M. Simard, & L. Specia (Eds.), Post-editing of machine translation: Processes and applications (pp. 200–218). Cambridge, UK: Cambridge Scholars Publishing.Google Scholar
  17. Daems, J. et al. (2015). The impact of machine translation error types on post-editing effort indicators. In S. O’Brien, M. Simard (Eds.), Fourth workshop on post-editing technology and practice, proceedings (pp. 31–45). Association for Machine Translation in the Americas. Available at:
  18. Daems, J., et al. (2017). Identifying the machine translation error types with the greatest impact on post-editing effort. Frontiers in Psychology, 8(August), 1–15. Scholar
  19. Deane-Cox, S. (2014). Remembering Oradour-sur-Glane: Collective memory in translation. Translation and Literature, 23, 272–283.CrossRefGoogle Scholar
  20. Diaz Cintas, J. (2009). New trends in audiovisual translation. Bristol/Buffalo/Toronto: Multilingual Matters.CrossRefGoogle Scholar
  21. Doherty, S., O’Brien, S., & Carl, M. (2010). Eye tracking as an automatic MT evaluation technique. Machine Translation, 24(1), 1–13. Scholar
  22. Dragsted, B. (2004). Segmentation in translation and translation memory systems: An empirical investigation of cognitive segmentation and effects of integrating a TM system into the translation process. Copenhagen: Samfundslitteratur.Google Scholar
  23. Dragsted, B. (2005). Segmentation in translation: Differences across levels of expertise and difficulty. Target: International Journal on Translation Studies, 17(1), 49–70.CrossRefGoogle Scholar
  24. Dragsted, B. (2010). Coordination of reading and writing processes in translation: An eye on unchartered territory. In G. M. Shreve & E. Angelone (Eds.), Translation and cognition. Amsterdam/Philadelphia: John Benjamins.Google Scholar
  25. Dragsted, B., & Hansen, I. G. (2008). Comprehension and production in translation: A pilot study on segmentation and the coordination of Reading and writing processes. In S. Göpferich, A. L. Jakobsen, & I. M. Mees (Eds.), Looking at eyes. Eye-tracking studies of reading and translation processing (pp. 1–21). Copenhagen: Samfundslitteratur (Copenhagen Studies in Language.Google Scholar
  26. Eisele, A. et al. (2008). Hybrid machine translation architectures within and beyond the EuroMatrix project. In: J. Hutchins, & W. V. Hahn (Eds.), Hybrid MT methods in practice: Their use in multilingual extraction, cross-language information retrieval, multilingual summarization, and applications in hand-held devices (pp. 27–34). Proceedings of the European Machine Translation Conference. Hamburg, Germany, HITEC e.V., European Association for Machine Translation.Google Scholar
  27. Fellbaum, C. (Ed.). (1998). WordNet: An electronic lexical database. Cambridge, MA: MIT Press.Google Scholar
  28. Fox, W. (2018) Can integrated titles improve the viewing experience?: Investigating the impact of subtitling on the reception and enjoyment of film using eye tracking and questionnaire data. Language Science Press.Google Scholar
  29. Gieshoff, A. C. (2018). The impact of audio-visual speech input on work-load in simultaneous interpreting. Phd Thesis. Germersheim: Johannes Gutenberg-Universität Mainz.Google Scholar
  30. Göpferich, S. (2008). Translationsprozessforschung: Stand – Methoden – Perspektiven. Tübingen: Narr.Google Scholar
  31. Hansen-Schirra, S. (2017). EEG and universal language processing in translation. In J. W. Schwieter & A. Ferreira (Eds.), The handbook of translation and cognition (pp. 232–247). Malden/Oxford, UK: Wiley-Blackwell.CrossRefGoogle Scholar
  32. Heyn, M. (1998). Translation memories: Insights and prospects. In L. Bowker et al. (Eds.), Unity in diversity? Current trends in translation studies (pp. 123–136). Manchester: St. Jerome.Google Scholar
  33. Hutchins, W. J., & Somers, H. L. (1992). An introduction to machine translation. London: Academic.Google Scholar
  34. Jakobsen, A. L. (2011). Tracking translators’ keystrokes and eye movements with Translog. In C. Alvstad, A. Hild, & E. Tiselius (Eds.), Methods and strategies of process research. Integrative approaches in translation studies (pp. 37–55). Amsterdam/Philadelphia: John Benjamins.CrossRefGoogle Scholar
  35. Jakobsen, A. L., & Jensen, K. T. H. (2008). Eye movement behaviour across four different types of reading task. In S. Göpferich, A. L. Jakobsen, & I. M. Mees (Eds.), Looking at eyes. Eye-tracking studies of reading and translation processing (pp. 103–124). Copenhagen: Samfundslitteratur.Google Scholar
  36. Jensen, K. T. H., Sjørup, A. C., & Winther Balling, L. (2009). Effects of L1 syntax on L2 translation. In F. Alves, S. Göpferich, & I. M. Mees (Eds.), Methodology, technology and innovation in translation process research: A tribute to Arnt Lykke Jakobsen (pp. 319–336). Copenhagen: Samfundslitteratur.Google Scholar
  37. John, B. E. (1996). Typist: A theory of performance in skilled typing. Human-Computer Interaction, 11, 321–355.CrossRefGoogle Scholar
  38. Kim, H., Lee, J.-H., & Na, S.-H. (2017). Predictor-estimator using multilevel task learning with stack propagation for neural quality estimation. Proceedings of the Second Conference on Machine Translation, 2(2016), 562–568. Scholar
  39. Klubička, F., Toral, A., & Sánchez-Cartagenac, V. M. (2017). Fine-grained human evaluation of neural versus phrase-based machine translation. The Prague Bulletin of Mathematical Linguistics, 108, 121–132. Scholar
  40. Koponen, M. et al. (2012). Post-editing time as a measure of cognitive effort. In Proceedings of the AMTA 2012 workshop on post-editing technology and practice (WPTP 2012) (pp. 11–20). San Diego.
  41. Krings, H. P. (1986). Was in den Köpfen von Übersetzern vorgeht: eine empirische Untersuchung zur Struktur des Übersetzungsprozesses an fortgeschrittenen Französischlernern. Tübingen: Günter Narr Verlag.Google Scholar
  42. Lacruz, I., Denkowski, M., Lavie, A. (2014). Cognitive demand and cognitive effort in post-editing. In Proceedings of the AMTA 2014 workshop on post-editing technology and practice (pp. 73–84).Google Scholar
  43. Läubli, S. (2014). Statistical modelling of human translation processes. Edinburgh: University of Edinburgh.Google Scholar
  44. Läubli, S., & Germann, U. (2016). Statistical modelling and automatic tagging of human translation processes. In M. Carl, S. Bangalore, & M. Schaeffer (Eds.), New directions in empirical translation process research: Exploring the CRITT TPR-DB (pp. 155–181). Cham: Springer International Publishing (New Frontiers in Translation Studies). Scholar
  45. Lin, D. (1996). On the Structural Complexity of Natural Language Sentences. In Proceedings of the 16th Conference on Computational Linguistics -, 2:729. Copenhagen, Denmark: Association for Computational Linguistics.
  46. Macizo, P., & Bajo, M. T. (2006). Reading for repetition and reading for translation: Do they involve the same processes? Cognition, 99(1), 1–34. Scholar
  47. Martínez-Gómez, P. et al. (2014). Recognition of translator expertise using sequences of fixations and keystrokes. In ETRA ‘14 Proceedings of the Symposium on Eye Tracking Research and Applications (pp. 299–302).
  48. Martínez-Gómez, P., et al. (2018). Recognition and characterization of translator attributes using sequences of fixations and keystrokes. In C. Walker & F. M. Federici (Eds.), Eye tracking and multidisciplinary studies on translation (pp. 97–120). Amsterdam/Philadelphia: Benjamins.CrossRefGoogle Scholar
  49. Mishra, A., Bhattacharyya, P., Carl, M. (2013) Automatically predicting sentence translation difficulty. In ACL 2013 – 51st Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference. vol 2, (pp. 346–351). Available at:
  50. Moorkens, J., et al. (2015). Correlations of perceived post-editing effort with measurements of actual effort. Machine Translation. Springer Netherlands, 29(1), 1–18. Scholar
  51. Nagels, A., et al. (2013). Neural substrates of figurative language during natural speech perception: An fMRI study. Frontiers in Behavioral Neuroscience, 7, 121. IF: 4,800.Google Scholar
  52. Nitzke, J., Hansen-Schirra, S., & Canfora, C. (2019). Risk management and post-editing competence. Journal of Specialised Translation, (31), 239–259.Google Scholar
  53. O’Brien, S. (2007). Eye-tracking and translation memory matches. Perspectives: Studies in Translatology, 14(3), 185–205. Scholar
  54. O’Brien, S. (2011). Towards predicting post-editing productivity. Machine Translation, 25(3), 197–215. Scholar
  55. Orrego-Carmona, D. (2015). The reception of (non) professional subtitling. PhD Thesis. Universitat Rovira i Virgili.Google Scholar
  56. Oster, K. (2018). Lexical activation and inhibition of cognates among translation students. Phd Thesis. Germersheim: Johannes Gutenberg-Universität Mainz.Google Scholar
  57. Rayner, K. (1998). Eye movements in reading and information processing: 20 years of research. Psychological Bulletin, 124(3), 372–422. Scholar
  58. Reichle, E. D., Warren, T., & McConnell, K. (2009). Using E-Z reader to model the effects of higher level language processing on eye movements during reading. Psychonomic Bulletin & Review, 16(1), 1–21. Scholar
  59. Richter, E. M., Engbert, R., & Kliegl, R. (2006). Current advances in SWIFT. Cognitive Systems Research, 7(1), 23–33.CrossRefGoogle Scholar
  60. Ruiz Toral, A. et al. (2018). Translation attaining the unattainable? Reassessing claims of human parity in neural machine translation. In Third conference on machine translation (pp. 113–123). Brussels.Google Scholar
  61. Saikh, T. et al. (2015) Predicting source gaze fixation duration: A machine learning approach. In Proceedings – 2015 international conference on cognitive computing and information processing, CCIP 2015.
  62. Schaeffer, M. J., & Carl, M. (2013). Shared representations and the translation process: A recursive model. Translation and Interpreting Studies, 8(2), 169–190. Scholar
  63. Schaeffer, M. J., & Carl, M. (2017a). A minimal cognitive model for translating and post-editing. In S. Kurohashi & P. Fung (Eds.), Proceedings of MT summit XVI (pp. 144–155). Japan: International Association for Machine Translation.Google Scholar
  64. Schaeffer, M. J., & Carl, M. (2017b). Language processing and translation: Translation and non-translational language use. In S. Hansen-Schirra, O. Czulo, & S. Hofmann (Eds.), Empirical modelling of translation and interpreting, (Translation and Multilingual Natural Language Processing 7, pp. 117–154). Berlin: Language Science Press. Scholar
  65. Schaeffer, M. J., et al. (2016). Measuring cognitive translation effort with activity units. Baltic Journal of Modern Computing, 4(2), 331–345.Google Scholar
  66. Schaeffer, M. J., et al. (2017). Reading for translation. In A. L. Jakobsen & B. Mesa-Lao (Eds.), Translation in transition. Amsterdam/Philadelphia: John Benjamins.Google Scholar
  67. Schilperoord, J. (1996). It’s about time: Temporal aspects of cognitive processes in text production. Amsterdam: Rodopi.Google Scholar
  68. Seubert, S. (2018). Die Verarbeitung von vvisuellen Inforationen beim Simultandolmetschen. Phd Thesis. Germersheim: Johannes Gutenberg-Universität Mainz.Google Scholar
  69. Snover, M. et al. (2006). A study of translation edit rate with targeted human annotation. In Proceedings of Association for Machine Translation in the Americas (pp. 223–231).
  70. Specia, L. (2011). Exploiting objective annotations for measuring translation post-editing effort. In Proceedings of the 15th conference of the European Association for Machine Translation (pp. 73–80). Leuven.Google Scholar
  71. Tatsumi, M. (2009). Correlation between automatic evaluation metric scores, post-editing speed, and some other factors. In Proceedings of MT Summit XII (pp. 332–339). Available at:
  72. van Hell, J. G., & de Groot, A. M. B. (2008). Sentence context modulates visual word recognition and translation in bilinguals. Acta Psychologica, 128, 431–451.CrossRefGoogle Scholar
  73. Vieira, L. N. (2014). Indices of cognitive effort in machine translation post-editing. Machine Translation, 28(3–4), 187–216. Scholar
  74. Wang, J. et al. (2018). Alibaba submission for WMT18 quality estimation task. In Proceedings of the Third Conference on Machine Translation: Shared Task Papers (pp. 809–815). Association for Computational Linguistics. Available at:
  75. Winther Balling, L., Hvelplund, K. T., & Sjørup, A. C. (2014). Evidence of parallel processing during translation. Meta: Translators’ Journal, 59(2), 234–259. Scholar
  76. Wu, Y. et al. (2016). ‘Google’s neural machine translation system: Bridging the gap between human and machine translation. ArXiv e-prints. pp. 1–23. Available at:

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Johannes Gutenberg University MainzGermersheimGermany

Personalised recommendations