Encyclopedia of Sustainable Management

Living Edition
| Editors: Samuel Idowu, René Schmidpeter, Nicholas Capaldi, Liangrong Zu, Mara Del Baldo, Rute Abreu


Living reference work entry
DOI: https://doi.org/10.1007/978-3-030-02006-4_299-1



Energy is defined renewable energy (RE) if it is gained from sources which are not depleted by use or if the sources can be recovered in human time scale. In contrast to nuclear and fossil fuels, which are in principal limited resources (BGR 2017), renewable energy is infinitely available in a time frame relevant for humanity (Quaschning 2016). Limitless sources for energy are geothermal energy, planetary energy, and solar energy.


Availability of energy for heating, communication, illumination, and other purposes is crucial for modern societies and economies. Therefore, the security of energy supply is important. Increasing population and increasing standards of living led and lead to a continuous increase of energy consumption (BP 2019a). An increase of the global energy demand by more than one quarter (IEA 2018a) to around one third (BP 2019a) of today’s demand by...

This is a preview of subscription content, log in to check access.


  1. British Petrol (BP). (2019a). Mehr Energie weniger Emissionen. https://www.bp.com/de_de/germany/presse/pressemeldungen/2019_pm-energy-outlook-2019.html. Accessed 20 Feb 2019.
  2. Bundesanstalt für Geowissenschaften und Rohstoffe BGR. (2017). BGR Energiestudie 2017 -Daten und Entwicklungen der deutschen und globalen Energieversorgung, p. 21. 184 8 Hannover.Google Scholar
  3. Demarty, M., & Bastien, J. (2011). GHG emissions from hydroelectric reservoirs in tropical and equatorial regions: Review of 20 years of CH4 emission measurements. Energy Policy, 39, 4197–4206.CrossRefGoogle Scholar
  4. Deutsches Zentrum für Luft- und Raumfahrt, DLR. (2006). Trans-Mediterranean interconnection for concentrating solar power. Final Report by German Aerospace Center (DLR), Institute of Technical Thermodynamics Section Systems Analysis and Technology Assessment, p. 29.Google Scholar
  5. Diffendorfer, J. E., Beston, J. A., Merrill, M. D., Stanton, J. C., Corum, M. D., Loss, S. R., Thogmartin, W. E., Johnson, D. H., Erickson, R. A., & Heist, K. W. A. (2017). Method to assess the population-level consequences of wind energy facilities on bird and bat species. In J. Köppel (Ed.), Wind energy and wildlife interactions. Presentations from the CWW2015 conference (pp. 65–76). Berlin: Springer.  https://doi.org/10.1007/978-3-319-51272-3_4.CrossRefGoogle Scholar
  6. Dunlap, R. A. (2015). Sustainable energy. Cengage Learning, Stamford.Google Scholar
  7. Ellabban, O., Abu-Rub, H., & Blaabjerg, F. (2014). Renewable energy resources: Current status, future prospects and their enabling technology. Renewable and Sustainable Energy Reviews, 39, 748–764.CrossRefGoogle Scholar
  8. ENERCON GmbH (2016) ENERCON wind energy converters. Technology & Service, Aurich. https://www.enercon.de/fileadmin/Redakteur/Medien-Portal/broschueren/pdf/EC_TuS_en_092016_web.pdf. Accessed 20 Jun 2019.
  9. Gunnarsson, A. (2002, July 21–25) Geothermal power in Iceland. In IEEE power engineering society summer meeting.  https://doi.org/10.1109/PESS.2002.1043160.
  10. Hansen, J., Johnson, D., Lacis, A., Lebedeff, S., Lee, P., Rind, D., & Russel, G. (1981). Climate impact of increasing atmospheric carbon dioxide. Science, 213, 957–966.CrossRefGoogle Scholar
  11. Hashemi, T. S., & Østergaard, J. (2016). Methods and strategies for overvoltage prevention in low voltage distribution systems with PV. IET Renewable Power Generation, 11(2), 205–214.  https://doi.org/10.1049/iet-rpg.2016.0277.CrossRefGoogle Scholar
  12. Intergovernmental Panel on Climate Change (IPCC). (1990). In J. T. Houghton, G. T. Jenkins, & J. J. Ephraims (Eds.), Climate change: The IPCC scientific assessment. New York: Cambridge University Press.Google Scholar
  13. Intergovernmental Panel on Climate Change (IPCC). (2012). Renewable energy sources and climate change mitigation (Special report of the IPCC). New York: Cambridge University Press. https://www.ipcc.ch/site/assets/uploads/2018/03/Summary-for-Policymakers-1.pdf. Accessed 18 Nov 2019.
  14. Intergovernmental Panel on Climate Change (IPCC) (2017) Special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems (SR2) (Special report of Imperial College, London). https://pdfs.semanticscholar.org/184e/09a5cc9d30b366500705192449c72db413f0.pdf. Accessed 20 Jun 2019.
  15. International Energy Agency (IEA). (2017). Bioenergy and biofuels. https://www.iea.org/topics/renewables/bioenergy/. Accessed 22 Feb 2019.
  16. International Energy Agency (IEA). (2018a). World energy outlook 2018 executive summary. https://www.iea.org/weo2018/. Accessed 20 Feb 2019.
  17. International Energy Agency (IEA). (2018b). World energy balances. https://www.iea.org/topics/renewables/. Accessed 22 Feb 2019.
  18. International Energy Agency (IEA). (2019). Total Primary Energy Supply (TPES) by source∗ World 1990–2016 on statistics, global energy data at your fingertips. https://www.iea.org/statistics/?country=WORLD&year=2016&category=Energy%20supply&indicator=TPESbySource&mode=chart&dataTable=BALANCES. Accessed 20 Feb 2019.
  19. International Renewable Energy Agency IRENA. (n.d.-a). Wind energy data. https://www.irena.org/wind. Accessed 21 Nov 2019.
  20. International Renewable Energy Agency IRENA. (n.d.-b). Bioenergy. https://www.irena.org/bioenergy. Accessed 25 Feb 2019.
  21. International Renewable Energy Agency IRENA. (n.d.-c). Solar energy. https://www.irena.org/solar. Accessed 25 Feb 2019.
  22. Jaiswal, A., & Bhagavatula, L. (2017). The world’s largest solar park – Kurnool, India, NRDC. https://www.nrdc.org/experts/anjali-jaiswal/worlds-largest-solar-park-kurnool-india. Accessed 21 Nov 2019.
  23. Jorde, K., & Kaltschmitt, M. (2007). Hydroelectric power generation. In M. Kaltschmitt, W. Streicher, & A. Wiese (Eds.), Renewable energy (pp. 349–384). Berlin/Heidelberg: Springer.Google Scholar
  24. Kaltschmitt, M., & Rau, U. (2007). Photovoltaic power generation. In M. Kaltschmitt, W. Streicher, & A. Wiese (Eds.), Renewable energy (pp. 229–238). Berlin/Heidelberg: Springer.Google Scholar
  25. Kaltschmitt, M., Skiba, M., & Wiese, A. (2007a). Wind power generation, technical description. In M. Kaltschmitt, W. Streicher, & A. Wiese (Eds.), Renewable energy (pp. 308–339). Berlin/Heidelberg: Springer.Google Scholar
  26. Kaltschmitt, M., Schröder, G., & Schneider, S. (2007b). Wind power generation, environmental analysis. In M. Kaltschmitt, W. Streicher, & A. Wiese (Eds.), Renewable energy (pp. 343–348). Berlin/Heidelberg: Springer.Google Scholar
  27. Meyer, A. K. P., Ehimen, E. A., & Holm-Nielsen, J. B. (2018). Future European biogas: Animal manure, straw and grass potentials for a sustainable European biogas production. Biomass and Bioenergy, 111, 154–164.  https://doi.org/10.1016/j.biombioe.2017.05.013.CrossRefGoogle Scholar
  28. Moore, L. M., & Post, H. N. (2008). Five years of operating experience at a large, utility-scale photovoltaic generating plant. Progress in Photovoltaics: Research and Applications, 16, 249–259.CrossRefGoogle Scholar
  29. Morris, D., & Scurlock, J. (2012). Bioenergy. In G. Boyle (Ed.), Renewable energy power for a sustainable future (pp. 117–184). Oxford, UK: Oxford University Press.Google Scholar
  30. Observatoire Méditerranéen de l’Energie ome. (2012). Solar thermal in the mediterranean region: Solar thermal action plan, OME report for GSWH-UNEP-UNDP, Nanterre. https://www.solarthermalworld.org/sites/gstec/files/news/file/2013-04-26/solar_thermal_action_plan_ome-mediterranean.pdf. Accessed 22 Feb 2019.
  31. Quaschning, V. (2016). Concentrated solar power. In Understanding renewable energy systems (2nd ed.). New York: Routledge.CrossRefGoogle Scholar
  32. Renewable Energy Policy Network for the 21st Century REN21. (2018). Transformation is picking up speed in the power sector, but urgent action is required in heating, cooling and transport. https://www.connect4climate.org/article/transformation-power-sector-urgent-action-heating-cooling-transport-ren21. Accessed 21 Nov 2019.
  33. Salameh, J. P., Cauet, S., Etien, E., Sakout, A., & Rambault, L. (2018). Gearbox condition monitoring in wind turbines: A review. Mechanical Systems and Signal Processing, 111, 251–264.  https://doi.org/10.1016/j.ymssp.2018.03.052.CrossRefGoogle Scholar
  34. Schaffarczyk, A. (2012). Einführung in die Windenergietechnik. München: Hanser Verlag.Google Scholar
  35. Senn, T., Friedl, A., & Gröngröft, A. (2009). Ethanolerzeugung und -nutzung. In M. Kaltschmitt, H. Hartmann, & H. Hofbauer (Eds.), Energie aus Biomasse (pp. 793–850). Berlin/Heidelberg: Springer.  https://doi.org/10.1007/978-3-540-85095-3_15.CrossRefGoogle Scholar
  36. SolarPaces. (2018). Final testing for 150 MW Noor III Tower CSP. https://www.solarpaces.org/final-testing-for-150-mw-noor-iii-tower-csp/. Accessed 22 Feb 2019.
  37. Statista. (n.d.). World’s largest solar PV power plants worldwide 2017. https://www.statista.com/statistics/217265/largest-solar-pv-power-plants-in-operation-worldwide/. Accessed 22 Feb 2019.
  38. Streicher, W. (2007). Solar thermal heat utilization. In M. Kaltschmitt, W. Streicher, & A. Wiese (Eds.), Renewable energy (pp. 123–170). Berlin/Heidelberg: Springer.Google Scholar
  39. Taylor, D. (2012). Wind Energy. In G. Boyle (Ed.), Renewable energy power for a sustainable future (pp. 297–362). Oxford: Oxford University Press.Google Scholar
  40. Trans-Mediterranian Renewable Energy Cooperation TREC (2007) Clean Power from Deserts White Book, TREC and Club of Rome, Hamburg.Google Scholar
  41. Twidell, J., & Weir, T. (2006). Power from the wind in renewable energy resources. Abingdon: Taylor & Francis.CrossRefGoogle Scholar
  42. Uihlein, A., & Magagna, D. (2016). Wave and tidal current energy – A review of the current state of research beyond technology. Renewable and Sustainable Energy Reviews, 58, 1070–1081.CrossRefGoogle Scholar
  43. Weinrebe, G. (2007). Parabolic through power plants. In M. Kaltschmitt, W. Streicher, & A. Wiese (Eds.), Renewable energy (pp. 194–203). Berlin/Heidelberg: Springer.Google Scholar
  44. Weinrebe, G., & Ortmanns, W. (2007). Solar thermal power plants. In M. Kaltschmitt, W. Streicher, & A. Wiese (Eds.), Renewable energy (pp. 171–181). Berlin/Heidelberg: Springer.Google Scholar
  45. Widmann, B., Kaltschmitt, M., Münch, E., Müller-Langer, F., Remmele, E., & Thuneke, K. (2009). Produktion und Nutzung von Pflanzenölkraftstoffen. In M. Kaltschmitt, H. Hartmann, & H. Hofbauer (Eds.), Energie aus Biomasse (pp. 711–768). Berlin/Heidelberg: Springer.  https://doi.org/10.1007/978-3-540-85095-3_13.CrossRefGoogle Scholar
  46. World Bank. (2016). World’s largest concentrated solar plant opened in Morocco. http://www.worldbank.org/en/news/press-release/2016/02/04/worlds-largest-concentrated-solar-plant-opened-in-morocco. Accessed 21 Feb 2018.
  47. World Bank Group. (2016). Global solar atlas. https://globalsolaratlas.info/?c=11.781325,55.722656,3&s=32.10119,86.484375. Accessed 22 Feb 2019.

Authors and Affiliations

  1. 1.Faculty of Communication and EnvironmentRhine-Waal University of Applied ScienceKamp-LintfortGermany

Section editors and affiliations

  • Shuchi Pahuja
    • 1
  1. 1.PGDAV CollegeUniversity of DelhiDelhiIndia