Advertisement

Changing Definition of Immunosuppression: Targeted Therapies and Resulting Emerging Infections and Their Prevention

  • Nicolas J. MuellerEmail author
Living reference work entry
  • 9 Downloads

Abstract

While some biologicals have been routinely used in solid organ and hematopoietic stem cell transplant patients for years, a number of newer compounds have been added to the armamentarium for varying indications spanning from the underlying disease to complications of transplantation. This chapter aims at describing the infectious risk of a selection of compounds. The specific chapters list a number of recommendations to consider for infection prevention, in addition to the standard preventive measures in place. Given the nature of the available data, these suggestions are meant to be neither exhaustive nor mandatory and must be applied in the context of the individual patient.

Keywords

Transplantation Biologics Infection Prevention Belatacept Basiliximab Rituximab Obinutuzumab Alemtuzumab Eculizumab Ruxolitinib Ibrutinib Brentuximab Bortezomib 

References

  1. 1.
    Mueller NJ. New immunosuppressive strategies and the risk of infection. Transpl Infect Dis. 2008;10(6):379–84.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Malinis M, Boucher HW, AST Infectious Diseases Community of Practice. Screening of donor and candidate prior to solid organ transplantation-guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin Transplant. 2019;33:e13548.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Perez CP, Patel N, Mardis CR, Meadows HB, Taber DJ, Pilch NA. Belatacept in solid organ transplant: review of current literature across transplant types. Transplantation. 2018; 102(9):1440–52.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Klintmalm GB, Feng S, Lake JR, Vargas HE, Wekerle T, Agnes S, et al. Belatacept-based immunosuppression in de novo liver transplant recipients: 1-year experience from a phase II randomized study. Am J Transplant. 2014;14(8):1817–27.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    LaMattina JC, Jason MP, Hanish SI, Ottmann SE, Klassen DK, Potosky D, et al. Safety of belatacept bridging immunosuppression in hepatitis C-positive liver transplant recipients with renal dysfunction. Transplantation. 2014;97(2):133–7.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Schwarz C, Rasoul-Rockenschaub S, Soliman T, Berlakovich GA, Steininger R, Muhlbacher F, et al. Belatacept treatment for two yr after liver transplantation is not associated with operational tolerance. Clin Transplant. 2015;29(1):85–9.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Vincenti F, Larsen C, Durrbach A, Wekerle T, Nashan B, Blancho G, et al. Costimulation blockade with belatacept in renal transplantation. N Engl J Med. 2005;353(8):770–81.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Vincenti F, Rostaing L, Grinyo J, Rice K, Steinberg S, Gaite L, et al. Belatacept and long-term outcomes in kidney transplantation. N Engl J Med. 2016;374(4):333–43.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Durrbach A, Pestana JM, Florman S, Del Carmen RM, Rostaing L, Kuypers D, et al. Long-term outcomes in belatacept- versus cyclosporine-treated recipients of extended criteria donor kidneys: final results from BENEFIT-EXT, a phase III randomized study. Am J Transplant. 2016;16(11):3192–201.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Masson P, Henderson L, Chapman JR, Craig JC, Webster AC. Belatacept for kidney transplant recipients. Cochrane Database Syst Rev. 2014;11:CD010699.Google Scholar
  11. 11.
    Xu H, Perez SD, Cheeseman J, Mehta AK, Kirk AD. The allo- and viral-specific immunosuppressive effect of belatacept, but not tacrolimus, attenuates with progressive T cell maturation. Am J Transplant. 2014;14(2):319–32.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Bassil N, Rostaing L, Mengelle C, Kallab S, Esposito L, Guitard J, et al. Prospective monitoring of cytomegalovirus, Epstein-Barr virus, BK virus, and JC virus infections on belatacept therapy after a kidney transplant. Exp Clin Transplant. 2014;12(3):212–9.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Brennan DC, Daller JA, Lake KD, Cibrik D, Del Castillo D, Thymoglobulin Induction Study Group. Rabbit antithymocyte globulin versus basiliximab in renal transplantation. N Engl J Med. 2006;355(19):1967–77.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Wang K, Xu X, Fan M. Induction therapy of basiliximab versus antithymocyte globulin in renal allograft: a systematic review and meta-analysis. Clin Exp Nephrol. 2018;22(3):684–93.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Tedesco-Silva H, Felipe C, Ferreira A, Cristelli M, Oliveira N, Sandes-Freitas T, et al. Reduced incidence of cytomegalovirus infection in kidney transplant recipients receiving everolimus and reduced tacrolimus doses. Am J Transplant. 2015;15(10):2655–64.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Butts RJ, Dipchand AI, Sutcliffe D, Bano M, Dimas V, Morrow R, et al. Comparison of basiliximab vs antithymocyte globulin for induction in pediatric heart transplant recipients: an analysis of the International Society for Heart and Lung Transplantation database. Pediatr Transplant. 2018;22(4):e13190.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Zhang GQ, Zhang CS, Sun N, Lv W, Chen BM, Zhang JL. Basiliximab application on liver recipients: a meta-analysis of randomized controlled trials. Hepatobiliary Pancreat Dis Int. 2017;16(2):139–46.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Sood P, Hariharan S. Anti-CD20 blocker rituximab in kidney transplantation. Transplantation. 2018;102(1):44–58.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Al-Sawaf O, Herling CD, Holtick U, Scheid C, Cramer P, Sasse S, et al. Venetoclax plus rituximab or obinutuzumab after allogeneic hematopoietic stem cell transplantation in chronic lymphocytic leukemia. Haematologica. 2019;104:e224.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Grim SA, Pham T, Thielke J, Sankary H, Oberholzer J, Benedetti E, et al. Infectious complications associated with the use of rituximab for ABO-incompatible and positive cross-match renal transplant recipients. Clin Transplant. 2007;21(5):628–32.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Lee J, Lee JG, Kim S, Song SH, Kim BS, Kim HO, et al. The effect of rituximab dose on infectious complications in ABO-incompatible kidney transplantation. Nephrol Dial Transplant. 2016;31(6):1013–21.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Nishida H, Ishida H, Tanaka T, Amano H, Omoto K, Shirakawa H, et al. Cytomegalovirus infection following renal transplantation in patients administered low-dose rituximab induction therapy. Transpl Int. 2009;22(10):961–9.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Kamar N, Milioto O, Puissant-Lubrano B, Esposito L, Pierre MC, Mohamed AO, et al. Incidence and predictive factors for infectious disease after rituximab therapy in kidney-transplant patients. Am J Transplant. 2010;10(1):89–98.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Gulleroglu K, Baskin E, Moray G, Ozdemir H, Arslan H, Haberal M. Rituximab therapy and infection risk in pediatric renal transplant patients. Exp Clin Transplant. 2016;14(2):172–5.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Scemla A, Loupy A, Candon S, Mamzer MF, Martinez F, Zuber J, et al. Incidence of infectious complications in highly sensitized renal transplant recipients treated by rituximab: a case-controlled study. Transplantation. 2010;90(11):1180–4.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Cheungpasitporn W, Thongprayoon C, Edmonds PJ, Bruminhent J, Tangdhanakanond K. The effectiveness and safety of rituximab as induction therapy in ABO-compatible non-sensitized renal transplantation: a systematic review and meta-analysis of randomized controlled trials. Ren Fail. 2015;37(9):1522–6.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Te H, Doucette K. Viral hepatitis: guidelines by the American Society of Transplantation Infectious Disease Community of Practice. Clin Transplant. 2019;33:e13514.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Martin ST, Cardwell SM, Nailor MD, Gabardi S. Hepatitis B reactivation and rituximab: a new boxed warning and considerations for solid organ transplantation. Am J Transplant. 2014; 14(4):788–96.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Lee J, Park JY, Kim DG, Lee JY, Kim BS, Kim MS, et al. Effects of rituximab dose on hepatitis B reactivation in patients with resolved infection undergoing immunologic incompatible kidney transplantation. Sci Rep. 2018;8(1):15629.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Masutani K, Omoto K, Okumi M, Okabe Y, Shimizu T, Tsuruya K, et al. Incidence of hepatitis B viral reactivation after kidney transplantation with low-dose rituximab administration. Transplantation. 2018;102(1):140–5.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Focosi D, Tuccori M, Maggi F. Progressive multifocal leukoencephalopathy and anti-CD20 monoclonal antibodies: what do we know after 20 years of rituximab. Rev Med Virol. 2019;29:e2077.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Dendle C, Gilbertson M, Korman TM, Golder V, Morand E, Opat S. Disseminated enteroviral infection associated with obinutuzumab. Emerg Infect Dis. 2015;21(9):1661–3.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Schachtner T, Reinke P. Pretransplant prophylactic rituximab to prevent Epstein-Barr virus (EBV) viremia in EBV-seronegative kidney transplant recipients from EBV-seropositive donors: results of a pilot study. Transpl Infect Dis. 2016;18(6):881–8.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Watson CJ, Bradley JA, Friend PJ, Firth J, Taylor CJ, Bradley JR, et al. Alemtuzumab (CAMPATH 1H) induction therapy in cadaveric kidney transplantation – efficacy and safety at five years. Am J Transplant. 2005;5(6):1347–53.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Morgan RD, O’Callaghan JM, Knight SR, Morris PJ. Alemtuzumab induction therapy in kidney transplantation: a systematic review and meta-analysis. Transplantation. 2012; 93(12):1179–88.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Hanaway MJ, Woodle ES, Mulgaonkar S, Peddi VR, Kaufman DB, First MR, et al. Alemtuzumab induction in renal transplantation. N Engl J Med. 2011;364(20):1909–19.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Helfrich M, Ison MG. Opportunistic infections complicating solid organ transplantation with alemtuzumab induction. Transpl Infect Dis. 2015;17(5):627–36.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Cupit-Link MC, Nageswara Rao A, Warad DM, Rodriguez V, Khan S. EBV-PTLD, adenovirus, and CMV in pediatric allogeneic transplants with alemtuzumab as part of pretransplant conditioning: a retrospective single center study. J Pediatr Hematol Oncol. 2018;40(8):e473–8.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Schneidewind L, Neumann T, Knoll F, Zimmermann K, Smola S, Schmidt CA, et al. Are the polyomaviruses BK and JC associated with opportunistic infections, graft-versus-host disease, or worse outcomes in adult patients receiving their first allogeneic stem cell transplantation with low-dose alemtuzumab? Acta Haematol. 2017;138(1):3–9.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Neumann T, Schneidewind L, Thiele T, Pink D, Schulze M, Schmidt C, et al. No indication of increased infection rates using low-dose alemtuzumab instead of anti-thymocyte globulin as graft-versus-host disease prophylaxis before allogeneic stem cell transplantation. Transpl Infect Dis. 2018;20(1).  https://doi.org/10.1111/tid.12822.
  41. 41.
    Peleg AY, Husain S, Kwak EJ, Silveira FP, Ndirangu M, Tran J, et al. Opportunistic infections in 547 organ transplant recipients receiving alemtuzumab, a humanized monoclonal CD-52 antibody. Clin Infect Dis. 2007;44(2):204–12.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Brodsky RA, Young NS, Antonioli E, Risitano AM, Schrezenmeier H, Schubert J, et al. Multicenter phase 3 study of the complement inhibitor eculizumab for the treatment of patients with paroxysmal nocturnal hemoglobinuria. Blood. 2008;111(4):1840–7.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Hillmen P, Young NS, Schubert J, Brodsky RA, Socie G, Muus P, et al. The complement inhibitor eculizumab in paroxysmal nocturnal hemoglobinuria. N Engl J Med. 2006;355(12): 1233–43.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Legendre CM, Licht C, Muus P, Greenbaum LA, Babu S, Bedrosian C, et al. Terminal complement inhibitor eculizumab in atypical hemolytic-uremic syndrome. N Engl J Med. 2013;368(23):2169–81.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Johnson CK, Leca N. Eculizumab use in kidney transplantation. Curr Opin Organ Transplant. 2015;20(6):643–51.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Elsallabi O, Bhatt VR, Dhakal P, Foster KW, Tendulkar KK. Hematopoietic stem cell transplant-associated thrombotic microangiopathy. Clin Appl Thromb Hemost. 2016;22(1): 12–20.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Rudoni J, Jan A, Hosing C, Aung F, Yeh J. Eculizumab for transplant-associated thrombotic microangiopathy in adult allogeneic stem cell transplant recipients. Eur J Haematol. 2018; 101(3):389–98.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Locke JE, Magro CM, Singer AL, Segev DL, Haas M, Hillel AT, et al. The use of antibody to complement protein C5 for salvage treatment of severe antibody-mediated rejection. Am J Transplant. 2009;9(1):231–5.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Biglarnia AR, Nilsson B, Nilsson T, von Zur-Muhlen B, Wagner M, Berne C, et al. Prompt reversal of a severe complement activation by eculizumab in a patient undergoing intentional ABO-incompatible pancreas and kidney transplantation. Transpl Int. 2011;24(8):e61–6.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Bentall A, Tyan DB, Sequeira F, Everly MJ, Gandhi MJ, Cornell LD, et al. Antibody-mediated rejection despite inhibition of terminal complement. Transpl Int. 2014;27(12):1235–43.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Stegall MD, Diwan T, Raghavaiah S, Cornell LD, Burns J, Dean PG, et al. Terminal complement inhibition decreases antibody-mediated rejection in sensitized renal transplant recipients. Am J Transplant. 2011;11(11):2405–13.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Benamu E, Montoya JG. Infections associated with the use of eculizumab: recommendations for prevention and prophylaxis. Curr Opin Infect Dis. 2016;29(4):319–29.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Gleesing J, Chiwane S, Rongkavilit C. Gonococcal septic shock associated with eculizumab treatment. Pediatr Infect Dis J. 2012;31(5):543.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Hublikar S, Maher WE, Bazan JA. Disseminated gonococcal infection and eculizumab – a “high risk” connection? Sex Transm Dis. 2014;41(12):747–8.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Crew PE, Abara WE, McCulley L, Waldron PE, Kirkcaldy RD, Weston EJ, et al. Disseminated gonococcal infections in patients receiving eculizumab: a case series. Clin Infect Dis. 2018;69(4)596–600,  https://doi.org/10.1093/cid/ciy958.
  56. 56.
    Crew PE, McNamara L, Waldron PE, McCulley L, Jones SC, Bersoff-Matcha SJ. Unusual Neisseria species as a cause of infection in patients taking eculizumab. J Infect. 2019; 78(2):113–8.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Reher D, Fuhrmann V, Kluge S, Nierhaus A. A rare case of septic shock due to Neisseria meningitidis serogroup B infection despite prior vaccination in a young adult with paroxysmal nocturnal haemoglobinuria receiving eculizumab. Vaccine. 2018;36(19):2507–9.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Friedl C, Hackl G, Schilcher G, Rosenkranz AR, Eller K, Eller P. Waterhouse-Friderichsen syndrome due to Neisseria meningitidis infection in a young adult with thrombotic microangiopathy and eculizumab treatment: case report and review of management. Ann Hematol. 2017;96(5):879–80.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Struijk GH, Bouts AH, Rijkers GT, Kuin EA, ten Berge IJ, Bemelman FJ. Meningococcal sepsis complicating eculizumab treatment despite prior vaccination. Am J Transplant. 2013; 13(3):819–20.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Kaabak M, Babenko N, Shapiro R, Zokoyev A, Dymova O, Kim E. A prospective randomized, controlled trial of eculizumab to prevent ischemia-reperfusion injury in pediatric kidney transplantation. Pediatr Transplant. 2018;22(2).  https://doi.org/10.1111/petr.13129.
  61. 61.
    Cohn AC, MacNeil JR, Clark TA, Ortega-Sanchez IR, Briere EZ, Meissner HC, et al. Prevention and control of meningococcal disease: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep. 2013;62(RR-2):1–28.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Winthrop KL, Mariette X, Silva JT, Benamu E, Calabrese LH, Dumusc A, et al. ESCMID Study Group for Infections in Compromised Hosts (ESGICH) Consensus Document on the safety of targeted and biological therapies: an infectious diseases perspective (Soluble immune effector molecules [II]: agents targeting interleukins, immunoglobulins and complement factors). Clin Microbiol Infect. 2018;24(Suppl 2):S21–40.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Vannucchi AM, Kiladjian JJ, Griesshammer M, Masszi T, Durrant S, Passamonti F, et al. Ruxolitinib versus standard therapy for the treatment of polycythemia vera. N Engl J Med. 2015;372(5):426–35.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Verstovsek S, Mesa RA, Gotlib J, Levy RS, Gupta V, DiPersio JF, et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N Engl J Med. 2012;366(9):799–807.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Verstovsek S, Mesa RA, Gotlib J, Gupta V, DiPersio JF, Catalano JV, et al. Long-term treatment with ruxolitinib for patients with myelofibrosis: 5-year update from the randomized, double-blind, placebo-controlled, phase 3 COMFORT-I trial. J Hematol Oncol. 2017;10(1):55.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Modi B, Hernandez-Henderson M, Yang D, Klein J, Dadwal S, Kopp E, et al. Ruxolitinib as salvage therapy for chronic graft-versus-host disease. Biol Blood Marrow Transplant. 2019;25(2):265–9.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Schoettler M, Duncan C, Lehmann L, Furutani E, Subramaniam M, Margossian S. Ruxolitinib is an effective steroid sparing agent in children with steroid refractory/dependent bronchiolitis obliterans syndrome after allogenic hematopoietic cell transplantation. Bone Marrow Transplant. 2019;54:1158.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Gonzalez Vicent M, Molina B, Gonzalez de Pablo J, Castillo A, Diaz MA. Ruxolitinib treatment for steroid refractory acute and chronic graft vs host disease in children: clinical and immunological results. Am J Hematol. 2019;94(3):319–26.PubMedPubMedCentralGoogle Scholar
  69. 69.
    von Bubnoff N, Ihorst G, Grishina O, Rothling N, Bertz H, Duyster J, et al. Ruxolitinib in GvHD (RIG) study: a multicenter, randomized phase 2 trial to determine the response rate of Ruxolitinib and best available treatment (BAT) versus BAT in steroid-refractory acute graft-versus-host disease (aGvHD) (NCT02396628). BMC Cancer. 2018;18(1):1132.CrossRefGoogle Scholar
  70. 70.
    Cervantes F, Vannucchi AM, Kiladjian JJ, Al-Ali HK, Sirulnik A, Stalbovskaya V, et al. Three-year efficacy, safety, and survival findings from COMFORT-II, a phase 3 study comparing ruxolitinib with best available therapy for myelofibrosis. Blood. 2013;122(25):4047–53.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Harrison CN, Vannucchi AM, Kiladjian JJ, Al-Ali HK, Gisslinger H, Knoops L, et al. Long-term findings from COMFORT-II, a phase 3 study of ruxolitinib vs best available therapy for myelofibrosis. Leukemia. 2016;30(8):1701–7.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Shanavas M, Popat U, Michaelis LC, Fauble V, McLornan D, Klisovic R, et al. Outcomes of allogeneic hematopoietic cell transplantation in patients with myelofibrosis with prior exposure to Janus kinase 1/2 inhibitors. Biol Blood Marrow Transplant. 2016;22(3):432–40.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Zeiser R, Burchert A, Lengerke C, Verbeek M, Maas-Bauer K, Metzelder SK, et al. Ruxolitinib in corticosteroid-refractory graft-versus-host disease after allogeneic stem cell transplantation: a multicenter survey. Leukemia. 2015;29(10):2062–8.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Lussana F, Cattaneo M, Rambaldi A, Squizzato A. Ruxolitinib-associated infections: a systematic review and meta-analysis. Am J Hematol. 2018;93(3):339–47.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Polverelli N, Palumbo GA, Binotto G, Abruzzese E, Benevolo G, Bergamaschi M, et al. Epidemiology, outcome, and risk factors for infectious complications in myelofibrosis patients receiving ruxolitinib: a multicenter study on 446 patients. Hematol Oncol. 2018;36:561.CrossRefGoogle Scholar
  76. 76.
    Caocci G, Murgia F, Podda L, Solinas A, Atzeni S, La Nasa G. Reactivation of hepatitis B virus infection following ruxolitinib treatment in a patient with myelofibrosis. Leukemia. 2014;28(1):225–7.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Wysham NG, Sullivan DR, Allada G. An opportunistic infection associated with ruxolitinib, a novel janus kinase 1,2 inhibitor. Chest. 2013;143(5):1478–9.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Wathes R, Moule S, Milojkovic D. Progressive multifocal leukoencephalopathy associated with ruxolitinib. N Engl J Med. 2013;369(2):197–8.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Goldberg RA, Reichel E, Oshry LJ. Bilateral toxoplasmosis retinitis associated with ruxolitinib. N Engl J Med. 2013;369(7):681–3.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Heine A, Brossart P, Wolf D. Ruxolitinib is a potent immunosuppressive compound: is it time for anti-infective prophylaxis? Blood. 2013;122(23):3843–4.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Mossner R, Diering N, Bader O, Forkel S, Overbeck T, Gross U, et al. Ruxolitinib induces interleukin 17 and ameliorates chronic mucocutaneous candidiasis caused by STAT1 gain-of-function mutation. Clin Infect Dis. 2016;62(7):951–3.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Jin Z, Wang Y, Wang J, Zhang J, Wu L, Wang Z. Long-term survival benefit of ruxolitinib in a patient with relapsed refractory chronic active Epstein-Barr virus. Ann Hematol. 2019; 98:2003.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Byrd JC, Furman RR, Coutre SE, Flinn IW, Burger JA, Blum KA, et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med. 2013;369(1):32–42.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Tillman BF, Pauff JM, Satyanarayana G, Talbott M, Warner JL. Systematic review of infectious events with the Bruton tyrosine kinase inhibitor ibrutinib in the treatment of hematologic malignancies. Eur J Haematol. 2018;100(4):325–34.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Tsukada S, Saffran DC, Rawlings DJ, Parolini O, Allen RC, Klisak I, et al. Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia. Cell. 1993;72(2):279–90.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Williams AM, Baran AM, Meacham PJ, Feldman MM, Valencia HE, Newsom-Stewart C, et al. Analysis of the risk of infection in patients with chronic lymphocytic leukemia in the era of novel therapies. Leuk Lymphoma. 2018;59(3):625–32.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Wang ML, Blum KA, Martin P, Goy A, Auer R, Kahl BS, et al. Long-term follow-up of MCL patients treated with single-agent ibrutinib: updated safety and efficacy results. Blood. 2015;126(6):739–45.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Chamilos G, Lionakis MS, Kontoyiannis DP. Call for action: invasive fungal infections associated with ibrutinib and other small molecule kinase inhibitors targeting immune signaling pathways. Clin Infect Dis. 2018;66(1):140–8.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Miklos D, Cutler CS, Arora M, Waller EK, Jagasia M, Pusic I, et al. Ibrutinib for chronic graft-versus-host disease after failure of prior therapy. Blood. 2017;130(21):2243–50.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Richardson PG, Sonneveld P, Schuster MW, Irwin D, Stadtmauer EA, Facon T, et al. Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med. 2005;352(24):2487–98.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    San Miguel JF, Schlag R, Khuageva NK, Dimopoulos MA, Shpilberg O, Kropff M, et al. Bortezomib plus melphalan and prednisone for initial treatment of multiple myeloma. N Engl J Med. 2008;359(9):906–17.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Bolanos-Meade J, Reshef R, Fraser R, Fei M, Abhyankar S, Al-Kadhimi Z, et al. Three prophylaxis regimens (tacrolimus, mycophenolate mofetil, and cyclophosphamide; tacrolimus, methotrexate, and bortezomib; or tacrolimus, methotrexate, and maraviroc) versus tacrolimus and methotrexate for prevention of graft-versus-host disease with haemopoietic cell transplantation with reduced-intensity conditioning: a randomised phase 2 trial with a non-randomised contemporaneous control group (BMT CTN 1203). Lancet Haematol. 2019; 6(3):e132–43.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Kim SJ, Kim K, Kim BS, Lee HJ, Kim H, Lee NR, et al. Bortezomib and the increased incidence of herpes zoster in patients with multiple myeloma. Clin Lymphoma Myeloma. 2008;8(4):237–40.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Redelman-Sidi G, Michielin O, Cervera C, Ribi C, Aguado JM, Fernandez-Ruiz M, et al. ESCMID Study Group for Infections in Compromised Hosts (ESGICH) Consensus Document on the safety of targeted and biological therapies: an infectious diseases perspective (Immune checkpoint inhibitors, cell adhesion inhibitors, sphingosine-1-phosphate receptor modulators and proteasome inhibitors). Clin Microbiol Infect. 2018;24(Suppl 2):S95–107.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Teh BW, Worth LJ, Harrison SJ, Thursky KA, Slavin MA. Risks and burden of viral respiratory tract infections in patients with multiple myeloma in the era of immunomodulatory drugs and bortezomib: experience at an Australian Cancer Hospital. Support Care Cancer. 2015;23(7):1901–6.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Teh BW, Teng JC, Urbancic K, Grigg A, Harrison SJ, Worth LJ, et al. Invasive fungal infections in patients with multiple myeloma: a multi-center study in the era of novel myeloma therapies. Haematologica. 2015;100(1):e28–31.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Gopal AK, Ramchandren R, O’Connor OA, Berryman RB, Advani RH, Chen R, et al. Safety and efficacy of brentuximab vedotin for Hodgkin lymphoma recurring after allogeneic stem cell transplantation. Blood. 2012;120(3):560–8.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Younes A, Gopal AK, Smith SE, Ansell SM, Rosenblatt JD, Savage KJ, et al. Results of a pivotal phase II study of brentuximab vedotin for patients with relapsed or refractory Hodgkin’s lymphoma. J Clin Oncol. 2012;30(18):2183–9.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Moskowitz CH, Nademanee A, Masszi T, Agura E, Holowiecki J, Abidi MH, et al. Brentuximab vedotin as consolidation therapy after autologous stem-cell transplantation in patients with Hodgkin’s lymphoma at risk of relapse or progression (AETHERA): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2015;385(9980): 1853–62.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Pro B, Advani R, Brice P, Bartlett NL, Rosenblatt JD, Illidge T, et al. Brentuximab vedotin (SGN-35) in patients with relapsed or refractory systemic anaplastic large-cell lymphoma: results of a phase II study. J Clin Oncol. 2012;30(18):2190–6.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Carson KR, Newsome SD, Kim EJ, Wagner-Johnston ND, von Geldern G, Moskowitz CH, et al. Progressive multifocal leukoencephalopathy associated with brentuximab vedotin therapy: a report of 5 cases from the Southern Network on Adverse Reactions (SONAR) project. Cancer. 2014;120(16):2464–71.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Division of Infectious Diseases and Hospital EpidemiologyUniversity Hospital ZürichZürichSwitzerland

Section editors and affiliations

  • Camille Nelson Kotton
    • 1
  1. 1.Infectious Diseases DivisionHarvard University Medical SchoolBostonUSA

Personalised recommendations