Zero Helium Boiloff MEG Technology

  • Petteri Laine
  • Jukka NenonenEmail author
  • Steve Chappell
  • Jukka Knuutila
Reference work entry


Whole-head MEG systems based on the low-Tc SQUID sensors utilize liquid helium to reach the temperature around 4 K. Until recent years, a typical MEG system needed a liquid helium refill once or twice per week. However, the increasing cost and the lack or limited availability of liquid helium for regular fillings have motivated commercial MEG manufacturers to develop zero-boiloff systems that maintain the low temperature without losing helium. In this section, we present the challenges, history, and state of the art of low helium consumption systems which employ a compact helium liquefier in open-loop, closed-loop, or integrated configurations. In addition we discuss possibilities for the future in liquid helium-free systems incorporating cryocoolers.


Magnetoencephalography (MEG) Superconducting quantum interference device (SQUID) Gifford-McMahon cryocooler Joule-Thomson cryocooler Pulse tube cryocooler Cryogenic cooling Helium liquefier Zero-boiloff system 


  1. Ackerman RA, Herd KG, Chen WE (1999) Advanced cryocooler cooling for MRI systems. In: Ross RG Jr (ed) Cryocoolers 10. Kluwer Academic/Plenum Publishers, New YorkGoogle Scholar
  2. Adachi Y, Oyama D, Kawai J et al (2016) Low-noise closed-cycle helium recondensing for SQUID biomagnetic measurement system. IEEE Trans Appl Supercond 26(5):1600704CrossRefGoogle Scholar
  3. Clarke J, Braginski A (eds) (2006) The SQUID handbook. Wiley-VCH, WeinhamGoogle Scholar
  4. Klemic G, Buchanan D, Cycowicz Y, Williamson SJ (1989) Sequential spatially distributed activity of the human brain detected magnetically by CryoSQUIDs. In: Willamson S et al (eds) Advances in biomagnetism. Plenum Press, New York, pp 685–689CrossRefGoogle Scholar
  5. Körber R, Storm J, Seton H et al (2016) SQUIDs in biomagnetism: a roadmap towards improved healthcare. Supercond Sci Technol 29(11):113001CrossRefGoogle Scholar
  6. Lee YH, Kwon H, Yu KK et al (2017) Low-noise magnetoencephalography system cooled by a continuously operating reliquefier. Supercond Sci Technol 30(8):084003CrossRefGoogle Scholar
  7. Petrashov V, Antonov V, Delsing P, Claeson T (1995) Phase controlled conductance of mesoscopic structures with superconducting “mirrors”. Phys Rev Lett 74:5268–5271CrossRefGoogle Scholar
  8. Radebaugh R (2009) Cryocoolers: the state of the art and recent developments. J Phys Condens Matter 21(16):164219CrossRefGoogle Scholar
  9. Rillo C, Gabal M, Lozano MP et al (2015) Enhancement of the liquefaction rate in small-scale helium liquefiers working near and above the critical point. Phys Rev Appl 3:051001CrossRefGoogle Scholar
  10. Sata K, Fujimoto S, Fukui N et al (1997) A 61-channel SQUID system for MEG measurement cooled by a GM/JT cryocooler. IEEE Trans Appl Supercond 7(2):2526–2529CrossRefGoogle Scholar
  11. Takeda T, Okamoto M, Miyazaki T, Katagiri K (2012) Performance of the helium circulation system on a commercialized MEG. J Phys Conf Ser 400:052035CrossRefGoogle Scholar
  12. Wang C, Sun L, Lichtenwalter B, Sun L et al (2016) Compact, ultra-low vibration, closed-cycle helium recycler for uninterrupted operation of MEG with SQUID magnetometers. Cryogenics 76:16–22CrossRefGoogle Scholar
  13. Yu KK, Lee YH, Lee SJ et al (2014) Closed-cycle cryocooled SQUID system with superconductive shield for biomagnetism. Supercond Sci Technol 27:105007CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Petteri Laine
    • 1
  • Jukka Nenonen
    • 1
    Email author
  • Steve Chappell
    • 2
  • Jukka Knuutila
    • 1
  1. 1.MEGIN (Elekta Oy)HelsinkiFinland
  2. 2.York Instruments LtdYorkUK

Section editors and affiliations

  • Risto Ilmoniemi
    • 1
  1. 1.Department of Neuroscience and Biomedical Engineering010854-0654EspooFinland

Personalised recommendations