Optically Pumped Magnetometers for MEG

  • Svenja KnappeEmail author
  • Tilmann Sander
  • Lutz Trahms
Reference work entry


Optically pumped magnetometers (OPMs) have seen rapid progress over the last decade in terms of performance and technology development. As highly sensitive room-temperature magnetometers, they present several advantages over superconducting quantum interference device (SQUID) sensors, such as the possibility for on-scalp magnetoencephalography (MEG) with conformal geometries and low-maintenance systems. We review the state of the art and different types of low-field OPMs, as well as recent MEG demonstrations with OPMs. Several challenges remain, such as the demonstration of large OPM multichannel systems, their limited dynamic range and bandwidth, and proper knowledge of sensor locations to name just a few. Certainly, OPMs present a promising technology to complement existing SQUID-based installations.


Optically pumped magnetometer Magnetoencephalography Superconducting quantum interference device Magnetocardiography Multichannel Electron spin resonance Microelectromechanical system Alkali-metal vapor cell Atomic magnetometer Optical magnetometer 


  1. Alem O, Benison AM, Barth DS, Kitching J, Knappe S (2014) Magnetoencephalography of epilepsy with a microfabricated atomic magnetrode. J Neurosci 34:14324–14327PubMedPubMedCentralCrossRefGoogle Scholar
  2. Alem O, Mhaskar R, Jiménez-Martínez R, Sheng D, LeBlanc J, Trahms L, Sander T, Kitching J, Knappe S (2017) Magnetic field imaging with microfabricated optically-pumped magnetometers. Opt Express 25:7849–7858PubMedCrossRefGoogle Scholar
  3. Alem O, Sander TH, Mhaskar R, LeBlanc J, Eswaran H, Steinhoff U, Okada Y, Kitching J, Trahms L, Knappe S (2015) Fetal magnetocardiography measurements with an array of microfabricated optically pumped magnetometers. Phys Med Biol 60:4797–4811PubMedCrossRefGoogle Scholar
  4. Allred JC, Lyman RN, Kornack TW, Romalis MV (2002) High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation. Phys Rev Lett 89:130801PubMedCrossRefGoogle Scholar
  5. Andersen LM, Oostenveld R, Pfeiffer C, Ruffieux S, Jousmäki V, Hämäläinen M, Schneiderman JF, Lundqvist D (2017) Similarities and differences between on-scalp and conventional in-helmet magnetoencephalography recordings. PLoS One 12(7):e0178602PubMedPubMedCentralCrossRefGoogle Scholar
  6. Batie M, Bitant S, Strasburger J, Shah V, Alem O, Wakai R (2018) Detection of fetal arrhythmia by using optically pumped magnetometers. J Am Coll Cardiol Clin Electrophysiol 4:2Google Scholar
  7. Bison G, Castagna N, Hofer A, Knowles P, Schenker JL, Kasprzak M, Saudan H, Weis A (2009) A room temperature 19-channel magnetic field mapping device for cardiac signals. Appl Phys Lett 95:173701CrossRefGoogle Scholar
  8. Bork J, Hahlbohm HD, Klein R, Schnabel A (2001) The 8-layered magnetically shielded room of the PTB: design and construction proceedings of the 12th international conference on biomagnetism. Helsinki University of Technology, Espoo, pp 970–973Google Scholar
  9. Borna A, Carter TR, Goldberg JD, Colombo AP, Jau Y-Y, Berry C, McKay J, Stephen J, Weisend M, Schwindt PDD (2017) A 20-channel magnetoencephalography system based on optically pumped magnetometers. Phys Med Biol 62:8909PubMedPubMedCentralCrossRefGoogle Scholar
  10. Boto E, Bowtell R, Krüger P, Fromhold TM, Morris PG, Meyer SS, Barnes GR, Brookes MJ (2016) On the potential of a new generation of magnetometers for MEG: a Beamformer simulation study. PLoS One 11:e0157655PubMedPubMedCentralCrossRefGoogle Scholar
  11. Boto E, Holmes N, Leggett J, Roberts G, Shah V, Meyer SS, Muñoz LD, Mullinger KJ, Tierney TM, Bestmann S, Barnes GR, Bowtell R, Brookes MJ (2018) Moving magnetoencephalography towards real-world applications with a wearable system. Nature 555:657PubMedPubMedCentralCrossRefGoogle Scholar
  12. Boto E, Meyer SS, Shah V, Alem O, Knappe S, Kruger P, Fromhold TM, Lim M, Glover PM, Morris PG, Bowtell R, Barnes GR, Brookes MJ (2017) A new generation of magnetoencephalography: room temperature measurements using optically-pumped magnetometers. NeuroImage 149:404PubMedPubMedCentralCrossRefGoogle Scholar
  13. Brookes M, Singh K (2013) Methods in mind. Phys World 26:39–44CrossRefGoogle Scholar
  14. Colombo AP, Carter TR, Borna A, Jau Y-Y, Johnson CN, Dagel AL, Schwindt PDD (2016) Four-channel optically pumped atomic magnetometer for magnetoencephalography. Opt Express 24:15403PubMedPubMedCentralCrossRefGoogle Scholar
  15. Dang HB, Maloof AC, Romalis MV (2010) Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer. Appl Phys Lett 97:151110CrossRefGoogle Scholar
  16. Dolgovskiy V, Fescenko I, Sekiguchi N, Colombo S, Lebedev V, Zhang J, Weis A (2016) A magnetic source imaging camera. Appl Phys Lett 109:023505CrossRefGoogle Scholar
  17. Dupont-Roc J, Haroche S, Cohen-Tannoudji C (1969) Detection of very weak magnetic fields (10-9 gauss) by Rb zero-field level crossing resonances. Phys Lett A 28:628CrossRefGoogle Scholar
  18. Happer W (1972) Optical pumping. Rev Mod Phys 44:169CrossRefGoogle Scholar
  19. Happer W, Tang H (1973) Spin-exchange shift and narrowing of magnetic resonance lines in optically pumped alkali vapors. Phys Rev Lett 31:273CrossRefGoogle Scholar
  20. Hari R, Forss N (1999) Magnetoencephalography in the study of human somatosensory cortical processing. Philos Trans R Soc B 354:1145CrossRefGoogle Scholar
  21. Iivanainen J, Stenroos M, Parkkonen L (2017) Measuring MEG closer to the brain: performance of on-scalp sensor arrays. NeuroImage 147:542PubMedPubMedCentralCrossRefGoogle Scholar
  22. Jensen K, Budvytyte R, Thomas RA, Wang T, Fuchs AM, Balabas MV, Vasilakis G, Mosgaard LD, Stærkind HC, Müller JH, Heimburg T, Olesen S-P, Polzik ES (2016) Non-invasive detection of animal nerve impulses with an atomic magnetometer operating near quantum limited sensitivity. Sci Rep 6:29638PubMedPubMedCentralCrossRefGoogle Scholar
  23. Johnson C, Adolphi NL, Butler KL, Debbie ML, Larson R, Schwindt PDD, Flynn ER (2012) Magnetic Relaxometry with an atomic magnetometer and SQUID sensors on targeted cancer cells. J Magn Magn Mater 324:2613PubMedPubMedCentralCrossRefGoogle Scholar
  24. Johnson C, Schwindt PDD, Weisend M (2010) Magnetoencephalography with a two-color pump-probe, fiber-coupled atomic magnetometer. Appl Phys Lett 97:243703CrossRefGoogle Scholar
  25. Johnson CN, Schwindt PDD, Weisend M (2013) Multi-sensor magnetoencephalography with atomic magnetometers. Phys Med Biol 58:6065PubMedPubMedCentralCrossRefGoogle Scholar
  26. Kamada K, Sato D, Ito Y, Natsukawa H, Okano K, Mizutani N, Kobayashi T (2015) Human magnetoencephalogram measurements using newly developed compact module of high-sensitivity atomic magnetometer. Jpn J Appl Phys 54:026601CrossRefGoogle Scholar
  27. Kim K, Begus S, Xia H, Lee S-K, Jazbinsek V, Trontelj Z, Romalis MV (2014) Multi-channel atomic magnetometer for magnetoencephalography: a configuration study. NeuroImage 89:143PubMedPubMedCentralCrossRefGoogle Scholar
  28. Knappe S, Gerginov V, Schwindt PDD, Shah V, Robinson H, Hollberg L, Kitching J (2005) Atomic vapor cells for chip-scale atomic clocks with improved long-term frequency stability. Opt Lett 30:2351PubMedCrossRefGoogle Scholar
  29. Knappe S, Sander TH, Kosch O, Wiekhorst F, Kitching J, Trahms L (2010) Cross-validation of microfabricated atomic magnetometers with superconducting quantum interference devices for biomagnetic applications. Appl Phys Lett 97:133703CrossRefGoogle Scholar
  30. Livanov MN, Kozolov AN, Sinelnikova SE, Kholodov JA, Markin VP, Gorbach AM, Korinewsky AV (1981) Record of the human magnetocardiogram by the quantum gradiometer with optical pumping. Adv Cardiol 28:78PubMedCrossRefGoogle Scholar
  31. Luessi M, Nummenmaa A, Lew S, Okada Y, Hämäläinen M (2014) Performance evaluation of a novel pediatric MEG system. In: The 19th international conference of biomagnetism. Halifax, pp P1–P002Google Scholar
  32. Mhaskar R, Knappe S, Kitching J (2012) A low-power, high-sensitivity micromachined optical magnetometer. Appl Phys Lett 101:241105–241104CrossRefGoogle Scholar
  33. Morales S, Corsi MC, Fourcault W, Bertrand F, Cauffet G, Gobbo C, Alcouffe F, Lenouvel F, Prado ML, Berger F, Vanzetto G, Labyt E (2017) Magnetocardiography measurements with 4 He vector optically pumped magnetometers at room temperature. Phys Med Biol 62:7267PubMedCrossRefGoogle Scholar
  34. Oida T, Kobayashi T (2013) Free induction decay MR signal measurements toward ultra-low field MRI with an optically pumped atomic magnetometer. In: 2013 35th annual international conference of the IEEE engineering in medicine and biology society (EMBC), pp 2615–2618CrossRefGoogle Scholar
  35. Riaz B, Pfeiffer C, Schneiderman JF (2017) Evaluation of realistic layouts for next generation on-scalp MEG: spatial information density maps. Sci Rep 7:6974PubMedPubMedCentralCrossRefGoogle Scholar
  36. Sander TH, Preusser J, Mhaskar R, Kitching J, Trahms L, Knappe S (2012) Magnetoencephalography with a chip-scale atomic magnetometer. Biomed Opt Express 3:981PubMedPubMedCentralCrossRefGoogle Scholar
  37. Sarvas J (1987) Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. Phys Med Biol 32:11PubMedPubMedCentralCrossRefGoogle Scholar
  38. Savukov IM, Zotev VS, Volegov PL, Espy MA, Matlashov AN, Gomez JJ, Kraus RH Jr (2009) MRI with an atomic magnetometer suitable for practical imaging applications. J Magn Reson 199:188PubMedCrossRefGoogle Scholar
  39. Seltzer SJ, Romalis MV (2004) Unshielded three-axis vector operation of a spin-exchange-relaxation-free atomic magnetometer. Appl Phys Lett 85:4804CrossRefGoogle Scholar
  40. Shah V, Knappe S, Schwindt PDD, Kitching J (2007) Subpicotesla atomic magnetometry with a microfabricated vapour cell. Nat Photonics 1:649CrossRefGoogle Scholar
  41. Shah VK, Wakai RT (2013) A compact, high performance atomic magnetometer for biomedical applications. Phys Med Biol 58:8153PubMedPubMedCentralCrossRefGoogle Scholar
  42. Sheng D, Perry AR, Krzyzewski SP, Geller S, Kitching J, Knappe S (2017) A microfabricated optically-pumped magnetic gradiometer. Appl Phys Lett 110:031106PubMedPubMedCentralCrossRefGoogle Scholar
  43. Storm JH, Hömmen P, Drung D, Körber R (2017) An ultra-sensitive and wideband magnetometer based on a superconducting quantum interference device. Appl Phys Lett 110:072603CrossRefGoogle Scholar
  44. Taue S, Sugihara Y, Kobayashi T, Ichihara S, Ishikawa K, Mizutani N (2010) Development of a highly sensitive optically pumped atomic magnetometer for biomagnetic field measurements: a phantom study. IEEE Trans Magn 46:3635CrossRefGoogle Scholar
  45. Wyllie R, Kauer M, Wakai RT, Walker TG (2012) Optical magnetometer array for Fetal Magnetocardiography. Opt Lett 37:2247PubMedPubMedCentralCrossRefGoogle Scholar
  46. Xia H, Baranga ABA, Hoffman D, Romalis MV (2006) Magnetoencephalography with an atomic magnetometer. Appl Phys Lett 89:211104CrossRefGoogle Scholar
  47. Xu S, Yashchuk VV, Donaldson MH, Rochester SM, Budker D, Pines A (2006) Magnetic resonance imaging with an optical atomic magnetometer. Proc Natl Acad Sci 103:12668PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of ColoradoBoulderUSA
  2. 2.FieldLine Inc.LafayetteUSA
  3. 3.Physikalisch-Technische BundesanstaltBerlinGermany

Section editors and affiliations

  • Risto Ilmoniemi

There are no affiliations available

Personalised recommendations